ترغب بنشر مسار تعليمي؟ اضغط هنا

In-Datacenter Performance Analysis of a Tensor Processing Unit

153   0   0.0 ( 0 )
 نشر من قبل David Patterson David Patterson
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many architects believe that major improvements in cost-energy-performance must now come from domain-specific hardware. This paper evaluates a custom ASIC---called a Tensor Processing Unit (TPU)---deployed in datacenters since 2015 that accelerates the inference phase of neural networks (NN). The heart of the TPU is a 65,536 8-bit MAC matrix multiply unit that offers a peak throughput of 92 TeraOps/second (TOPS) and a large (28 MiB) software-managed on-chip memory. The TPUs deterministic execution model is a better match to the 99th-percentile response-time requirement of our NN applications than are the time-varying optimizations of CPUs and GPUs (caches, out-of-order execution, multithreading, multiprocessing, prefetching, ...) that help average throughput more than guaranteed latency. The lack of such features helps explain why, despite having myriad MACs and a big memory, the TPU is relatively small and low power. We compare the TPU to a server-class Intel Haswell CPU and an Nvidia K80 GPU, which are contemporaries deployed in the same datacenters. Our workload, written in the high-level TensorFlow framework, uses production NN applications (MLPs, CNNs, and LSTMs) that represent 95% of our datacenters NN inference demand. Despite low utilization for some applications, the TPU is on average about 15X - 30X faster than its contemporary GPU or CPU, with TOPS/Watt about 30X - 80X higher. Moreover, using the GPUs GDDR5 memory in the TPU would triple achieved TOPS and raise TOPS/Watt to nearly 70X the GPU and 200X the CPU.



قيم البحث

اقرأ أيضاً

Accurate hardware performance models are critical to efficient code generation. They can be used by compilers to make heuristic decisions, by superoptimizers as a minimization objective, or by autotuners to find an optimal configuration for a specifi c program. However, they are difficult to develop because contemporary processors are complex, and the recent proliferation of deep learning accelerators has increased the development burden. We demonstrate a method of learning performance models from a corpus of tensor computation graph programs for Tensor Processing Unit (TPU) instances. We show that our learned model outperforms a heavily-optimized analytical performance model on two tasks -- tile-size selection and operator fusion -- and that it helps an autotuner discover faster programs in a setting where access to TPUs is limited or expensive.
Application-specific optical processors have been considered disruptive technologies for modern computing that can fundamentally accelerate the development of artificial intelligence (AI) by offering substantially improved computing performance. Rece nt advancements in optical neural network architectures for neural information processing have been applied to perform various machine learning tasks. However, the existing architectures have limited complexity and performance; and each of them requires its own dedicated design that cannot be reconfigured to switch between different neural network models for different applications after deployment. Here, we propose an optoelectronic reconfigurable computing paradigm by constructing a diffractive processing unit (DPU) that can efficiently support different neural networks and achieve a high model complexity with millions of neurons. It allocates almost all of its computational operations optically and achieves extremely high speed of data modulation and large-scale network parameter updating by dynamically programming optical modulators and photodetectors. We demonstrated the reconfiguration of the DPU to implement various diffractive feedforward and recurrent neural networks and developed a novel adaptive training approach to circumvent the system imperfections. We applied the trained networks for high-speed classifying of handwritten digit images and human action videos over benchmark datasets, and the experimental results revealed a comparable classification accuracy to the electronic computing approaches. Furthermore, our prototype system built with off-the-shelf optoelectronic components surpasses the performance of state-of-the-art graphics processing units (GPUs) by several times on computing speed and more than an order of magnitude on system energy efficiency.
Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a significant overhead in terms of both latency and energ y. A major reason is that this communication happens through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data movement bottleneck requires a paradigm where the memory system assumes an active role in computing by integrating processing capabilities. This paradigm is known as processing-in-memory (PIM). Recent research explores different forms of PIM architectures, motivated by the emergence of new 3D-stacked memory technologies that integrate memory with a logic layer where processing elements can be easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available real-world PIM architecture. This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architecture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based PIM system using microbenchmarks to assess various architecture limits such as compute throughput and memory bandwidth, yielding new insights. Second, we present PrIM, a benchmark suite of 16 workloads from different application domains (e.g., linear algebra, databases, graph processing, neural networks, bioinformatics).
We introduce LightOns Optical Processing Unit (OPU), the first photonic AI accelerator chip available on the market for at-scale Non von Neumann computations, reaching 1500 TeraOPS. It relies on a combination of free-space optics with off-the-shelf c omponents, together with a software API allowing a seamless integration within Python-based processing pipelines. We discuss a variety of use cases and hybrid network architectures, with the OPU used in combination of CPU/GPU, and draw a pathway towards optical advantage.
We analyze linear independence of rank one tensors produced by tensor powers of randomly perturbed vectors. This enables efficient decomposition of sums of high-order tensors. Our analysis builds upon [BCMV14] but allows for a wider range of perturba tion models, including discrete ones. We give an application to recovering assemblies of neurons. Assemblies are large sets of neurons representing specific memories or concepts. The size of the intersection of two assemblies has been shown in experiments to represent the extent to which these memories co-occur or these concepts are related; the phenomenon is called association of assemblies. This suggests that an animals memory is a complex web of associations, and poses the problem of recovering this representation from cognitive data. Motivated by this problem, we study the following more general question: Can we reconstruct the Venn diagram of a family of sets, given the sizes of their $ell$-wise intersections? We show that as long as the family of sets is randomly perturbed, it is enough for the number of measurements to be polynomially larger than the number of nonempty regions of the Venn diagram to fully reconstruct the diagram.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا