ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for a quantum dipole liquid state in an organic quasi-two-dimensional material

58   0   0.0 ( 0 )
 نشر من قبل Natalia Drichko
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mott insulators are commonly pictured with electrons localized on lattice sites. Their low-energy degrees of freedom involve spins only. Here we observe emerging charge degrees of freedom in a molecule-based Mott insulator $kappa$-(BEDT-TTF)$_2$Hg(SCN)$_2$Br, resulting in a quantum dipole liquid state. Electrons localized on molecular dimer lattice sites form electric dipoles that do not order at low temperatures and fluctuate with frequency detected experimentally in our Raman spectroscopy experiments. The heat capacity and Raman scattering response are consistent with a scenario where the composite spin and electric dipole degrees of freedom remain fluctuating down to the lowest measured temperatures.



قيم البحث

اقرأ أيضاً

Since their theoretical prediction by Peierls in the 30s, charge density waves (CDW) have been one of the most commonly encountered electronic phases in low dimensional metallic systems. The instability mechanism originally proposed combines Fermi su rface nesting and electron-phonon coupling but is, strictly speaking, only valid in one dimension. In higher dimensions, its relevance is questionable as sharp maxima in the static electronic susceptibility chi(q) are smeared out, and are, in many cases, unable to account for the periodicity of the observed charge modulations. Here, we investigate the quasi twodimensional LaAgSb2, which exhibits two CDW transitions, by a combination of diffuse xray scattering, inelastic x-ray scattering and ab initio calculations. We demonstrate that the CDW formation is driven by phonons softening. The corresponding Kohn anomalies are visualized in 3D through the momentum distribution of the x-ray diffuse scattering intensity. We show that they can be quantitatively accounted for by considering the electronic susceptibility calculated from a Dirac-like band, weighted by anisotropic electron-phonon coupling. This remarkable agreement sheds new light on the importance of Fermi surface nesting in CDW formation.
Changing the interactions between particles in an ensemble-by varying the temperature or pressure, for example-can lead to phase transitions whose critical behaviour depends on the collective nature of the many-body system. Despite the diversity of i ngredients, which include atoms, molecules, electrons and their spins, the collective behaviour can be grouped into several families (called universality classes) represented by canonical spin models1. One kind of transition, the Mott transition2, occurs when the repulsive Coulomb interaction between electrons is increased, causing wave-like electrons to behave as particles. In two dimensions, the attractive behaviour responsible for the superconductivity in high-transition temperature copper oxide3,4 and organic5-7 compounds appears near the Mott transition, but the universality class to which two-dimensional, repulsive electronic systems belongs remains unknown. Here we present an observation of the critical phenomena at the pressure-induced Mott transition in a quasi-two-dimensional organic conductor using conductance measurements as a probe. We find that the Mott transition in two dimensions is not consistent with known universality classes, as the observed collective behaviour has previously not been seen. This peculiarity must be involved in any emergent behaviour near the Mott transition in two dimensions.
Although the isotope effect in superconducting materials is well-documented, changes in the magnetic properties of antiferromagnets due to isotopic substitution are seldom discussed and remain poorly understood. This is perhaps surprising given the p ossible link between the quasi-two-dimensional (Q2D) antiferromagnetic and superconducting phases of the layered cuprates. Here we report the experimental observation of shifts in the N{e}el temperature and critical magnetic fields ($Delta T_{rm N}/T_{rm N}approx 4%$; $Delta B_{rm c}/B_{rm c}approx 4%$) in a Q2D organic molecular antiferromagnets on substitution of hydrogen for deuterium. These compounds are characterized by strong hydrogen bonds through which the dominant superexchange is mediated. We evaluate how the in-plane and inter-plane exchange energies evolve as the hydrogens on different ligands are substituted, and suggest a possible mechanism for this effect in terms of the relative exchange efficiency of hydrogen and deuterium bonds.
128 - F. Kagawa , T. Itou , K. Miyagawa 2004
We investigated the effect of magnetic field on the highly correlated metal near the Mott transition in the quasi-two-dimensional layered organic conductor, $kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Cl, by the resistance measurements under control of te mperature, pressure, and magnetic field. It was demonstrated that the marginal metallic phase near the Mott transition is susceptible to the field-induced localization transition of the first order, as was predicted theoretically. The thermodynamic consideration of the present results gives a conceptual pressure-field phase diagram of the Mott transition at low temperatures.
Magnetic systems composed of weakly coupled spin-1/2 chains are fertile ground for hosting the fractional magnetic excitations that are intrinsic to interacting fermions in one-dimension (1D). However, the exotic physics arising from the quantum many -body interactions beyond 1D are poorly understood in materials of this class. Spinons and psinons are two mutually exclusive low-energy magnetic quasiparticles; the excitation seen depends on the ground state of the spin chain. Here, we present inelastic neutron scattering and neutron diffraction evidence for their coexistence in SrCo$_{2}$V$_{2}$O$_{8}$ at milli-Kelvin temperatures in part of the Neel phase (2.4 T $leq$ $mu_mathrm{{0}}$H $<$ 3.9 T) and possibly also the field-induced spin density wave phase up to the highest field probed ($mu_mathrm{{0}}$H $geq$ 3.9 T, $mu_mathrm{{0}}$H$_mathbf{mathrm{{max}}}$ = 5.5 T). These results unveil a novel spatial phase inhomogeneity for the weakly coupled spin chains in this compound. This quantum dynamical phase separation is a new phenomenon in quasi-1D quantum magnets, highlighting the non-trivial consequences of inter-chain coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا