ﻻ يوجد ملخص باللغة العربية
Changing the interactions between particles in an ensemble-by varying the temperature or pressure, for example-can lead to phase transitions whose critical behaviour depends on the collective nature of the many-body system. Despite the diversity of ingredients, which include atoms, molecules, electrons and their spins, the collective behaviour can be grouped into several families (called universality classes) represented by canonical spin models1. One kind of transition, the Mott transition2, occurs when the repulsive Coulomb interaction between electrons is increased, causing wave-like electrons to behave as particles. In two dimensions, the attractive behaviour responsible for the superconductivity in high-transition temperature copper oxide3,4 and organic5-7 compounds appears near the Mott transition, but the universality class to which two-dimensional, repulsive electronic systems belongs remains unknown. Here we present an observation of the critical phenomena at the pressure-induced Mott transition in a quasi-two-dimensional organic conductor using conductance measurements as a probe. We find that the Mott transition in two dimensions is not consistent with known universality classes, as the observed collective behaviour has previously not been seen. This peculiarity must be involved in any emergent behaviour near the Mott transition in two dimensions.
We investigated the effect of magnetic field on the highly correlated metal near the Mott transition in the quasi-two-dimensional layered organic conductor, $kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Cl, by the resistance measurements under control of te
We study the electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ by means of density-functional band theory, Hubbard model calculations, and angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal s
We have measured the high field magnetoresistence and magnetization of quasi-one- dimensional (Q1D) organic conductor (Per)2Pt(mnt)2 (where Per = perylene and mnt = maleonitriledithiolate), which has a charge density wave (CDW) ground state at zero m
Although the isotope effect in superconducting materials is well-documented, changes in the magnetic properties of antiferromagnets due to isotopic substitution are seldom discussed and remain poorly understood. This is perhaps surprising given the p
The quasi-one-dimensional organic conductors (TMTTF)$_2X$ with non-centrosymmetric anions commonly undergo charge- and anion-order transitions upon cooling. While for compounds with tetrahedral anions ($X$ = BF$_4^-$, ReO$_4^-$, and ClO$_4^-$) the ch