ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling a Bistable System Strongly Coupled to a Debye Bath: A Quasiclassical Approach Based on the Generalised Langevin Equation

52   0   0.0 ( 0 )
 نشر من قبل Lorenzo Stella
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bistable systems present two degenerate metastable configurations separated by an energy barrier. Thermal or quantum fluctuations can promote the transition between the configurations at a rate which depends on the dynamical properties of the local environment (i.e., a thermal bath). In the case of classical systems, strong system-bath interaction has been successfully modelled by the Generalised Langevin Equation (GLE) formalism. Here we show that the efficient GLE algorithm introduced in Phys. Rev. B 89, 134303 (2014) can be extended to include some crucial aspects of the quantum fluctuations. In particular, the expected isotopic effect is observed along with the convergence of the quantum and classical transition rates in the strong coupling limit. Saturation of the transition rates at low temperature is also retrieved, in qualitative, yet not quantitative, agreement with the analytic predictions. The discrepancies in the tunnelling regime are due to an incorrect sampling close to the barrier top. The domain of applicability of the quasiclassical GLE is also discussed.



قيم البحث

اقرأ أيضاً

We investigate three kinds of heat produced in a system and a bath strongly coupled via an interaction Hamiltonian. By studying the energy flows between the system, the bath, and their interaction, we provide rigorous definitions of two types of heat , $Q_{rm S}$ and $Q_{rm B}$ from the energy loss of the system and the energy gain of the bath, respectively. This is in contrast to the equivalence of $Q_{rm S}$ and $Q_{rm B}$, which is commonly assumed to hold in the weak coupling regime. The bath we consider is equipped with a thermostat which enables it to reach an equilibrium. We identify another kind of heat $Q_{rm SB}$ from the energy dissipation of the bath into the super bath that provides the thermostat. We derive the fluctuation theorems (FTs) with the system variables and various heats, which are discussed in comparison with the FT for the total entropy production. We take an example of a sliding harmonic potential of a single Brownian particle in a fluid and calculate the three heats in a simplified model. These heats are found to equal on average in the steady state of energy, but show different fluctuations at all times.
We study a system-bath description in the strong coupling regime where it is not possible to derive a master equation for the reduced density matrix by a direct expansion in the system-bath coupling. A particular example is a bath with significant sp ectral weight at low frequencies. Through a unitary transformation it can be possible to find a more suitable small expansion parameter. Within such approach we construct a formally exact expansion of the master equation on the Keldysh contour. We consider a system diagonally coupled to a bosonic bath and expansion in terms of a non-diagonal hopping term. The lowest-order expansion is equivalent to the so-called $P(E)$-theory or non-interacting blip approximation (NIBA). The analysis of the higher-order contributions shows that there are two different classes of higher-order diagrams. We study how the convergence of this expansion depends on the form of the spectral function with significant weight at zero frequency.
We propose a new concept for the dynamics of a quantum bath, the Chebyshev space, and a new method based on this concept, the Chebyshev space method. The Chebyshev space is an abstract vector space that exactly represents the fermionic or bosonic bat h degrees of freedom, without a discretization of the bath density of states. Relying on Chebyshev expansions the Chebyshev space representation of a bath has very favorable properties with respect to extremely precise and efficient calculations of groundstate properties, static and dynamical correlations, and time-evolution for a great variety of quantum systems. The aim of the present work is to introduce the Chebyshev space in detail and to demonstrate the capabilities of the Chebyshev space method. Although the central idea is derived in full generality the focus is on model systems coupled to fermionic baths. In particular we address quantum impurity problems, such as an impurity in a host or a bosonic impurity with a static barrier, and the motion of a wave packet on a chain coupled to leads. For the bosonic impurity, the phase transition from a delocalized electron to a localized polaron in arbitrary dimension is detected. For the wave packet on a chain, we show how the Chebyshev space method implements different boundary conditions, including transparent boundary conditions replacing infinite leads. Furthermore the self-consistent solution of the Holstein model in infinite dimension is calculated. With the examples we demonstrate how highly accurate results for system energies, correlation and spectral functions, and time-dependence of observables are obtained with modest computational effort.
Open classical systems with balanced, spatially separated gain and loss, also called $mathcal{PT}$ symmetric systems, are a subject of intense, ongoing research. We investigate the properties of a classical chain with spatially separated viscous loss and stochastic gain that are balanced only in a statistical sense. For a purely harmonic chain, we show that a split Langevin bath leads to either the absence of thermalization or non-equilibrium steady states with inhomogeneous temperature profile. Both phenomena are understood in terms of normal modes of the chain, where dissipation in one normal mode is correlated with the velocities of all other modes. We obtain closed-form expressions for the mode temperatures and show that nonlinearities lead to steady states due to mode mixing even in the presence of a split Langevin bath.
The theory of probability shows that, as the fraction $X_n/Yto 0$, the conditional probability for $X_n$, given $X_n+Y in h_{delta}:=[h, h+delta]$, has a limit law $f_{X_n}(x)e^{-psi_n(h_delta)x}$, where $psi_n(h_delta) $ equals to $[partial ln P(Y i n y_delta)/partial y]_{y=h}$ plus an additional term, contributed from the correlation between $X_n$ and bath $Y$. By applying this limit law to an isolated composite system consisting of two strongly coupled parts, a system of interest and a large but finite bath, we derive the generalized Boltzmann distribution law for the system of interest in the exponential form of a redefined Hamiltonian and corrected Boltzmann temperature that reflects the modification due to strong system-bath coupling and the large but finite bath.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا