ترغب بنشر مسار تعليمي؟ اضغط هنا

Three heats in strongly coupled system and bath

59   0   0.0 ( 0 )
 نشر من قبل Jaegon Um
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate three kinds of heat produced in a system and a bath strongly coupled via an interaction Hamiltonian. By studying the energy flows between the system, the bath, and their interaction, we provide rigorous definitions of two types of heat, $Q_{rm S}$ and $Q_{rm B}$ from the energy loss of the system and the energy gain of the bath, respectively. This is in contrast to the equivalence of $Q_{rm S}$ and $Q_{rm B}$, which is commonly assumed to hold in the weak coupling regime. The bath we consider is equipped with a thermostat which enables it to reach an equilibrium. We identify another kind of heat $Q_{rm SB}$ from the energy dissipation of the bath into the super bath that provides the thermostat. We derive the fluctuation theorems (FTs) with the system variables and various heats, which are discussed in comparison with the FT for the total entropy production. We take an example of a sliding harmonic potential of a single Brownian particle in a fluid and calculate the three heats in a simplified model. These heats are found to equal on average in the steady state of energy, but show different fluctuations at all times.



قيم البحث

اقرأ أيضاً

51 - L. Stella , H. Ness , C.D. Lorenz 2017
Bistable systems present two degenerate metastable configurations separated by an energy barrier. Thermal or quantum fluctuations can promote the transition between the configurations at a rate which depends on the dynamical properties of the local e nvironment (i.e., a thermal bath). In the case of classical systems, strong system-bath interaction has been successfully modelled by the Generalised Langevin Equation (GLE) formalism. Here we show that the efficient GLE algorithm introduced in Phys. Rev. B 89, 134303 (2014) can be extended to include some crucial aspects of the quantum fluctuations. In particular, the expected isotopic effect is observed along with the convergence of the quantum and classical transition rates in the strong coupling limit. Saturation of the transition rates at low temperature is also retrieved, in qualitative, yet not quantitative, agreement with the analytic predictions. The discrepancies in the tunnelling regime are due to an incorrect sampling close to the barrier top. The domain of applicability of the quasiclassical GLE is also discussed.
We study a system-bath description in the strong coupling regime where it is not possible to derive a master equation for the reduced density matrix by a direct expansion in the system-bath coupling. A particular example is a bath with significant sp ectral weight at low frequencies. Through a unitary transformation it can be possible to find a more suitable small expansion parameter. Within such approach we construct a formally exact expansion of the master equation on the Keldysh contour. We consider a system diagonally coupled to a bosonic bath and expansion in terms of a non-diagonal hopping term. The lowest-order expansion is equivalent to the so-called $P(E)$-theory or non-interacting blip approximation (NIBA). The analysis of the higher-order contributions shows that there are two different classes of higher-order diagrams. We study how the convergence of this expansion depends on the form of the spectral function with significant weight at zero frequency.
In this work, we establish a so-called system-bath entanglement theorem, for arbitrary systems coupled with Gaussian environments. This theorem connects the entangled system-bath response functions in the total composite space to those of local syste ms, as long as the interacting bath spectral densities are given. We validate the theorem with the direct evaluation via the exact dissipaton-equation-of-motion approach. Therefore, this work enables various quantum dissipation theories, which originally describe only the reduced system dynamics, for their evaluations on the system-bath entanglement properties. Numerical demonstrations are carried out on the Fano interference spectroscopies of spin-boson systems.
We propose a quasi-particle description for the hierarchical equations of motion formalism for quantum dissipative dynamics systems. Not only it provides an alternative mathematical means to the existing formalism, the new protocol clarifies also exp licitly the physical meanings of the auxiliary density operators and their relations to full statistics on solvation bath variables. Combining with the standard linear response theory, we construct further the hierarchical dynamics formalism for correlated spectrum of system--bath coherence. We evaluate the spectrum matrix for a demonstrative spin-boson system-bath model. While the individual diagonal element of the spectrum matrix describes the system or the solvation bath correlation, the off-diagonal elements characterize the correlation between system and bath solvation dynamics.
Understanding non-equilibrium heat transport is crucial for controling heat flow in nano-scale systems. We study thermal energy transfer in a generalized non-equilibrium spin-boson model (NESB) with non-commutative system-bath coupling operators and discover unusual transport properties. Compared to the conventional NESB, the heat current is greatly enhanced by rotating the coupling operators. Constructive contribution to thermal rectification can be optimized when two sources of asymmetry, system-bath coupling strength and coupling operators, coexist. At the weak coupling and the adiabatic limit, the scaling dependence of heat current on the coupling strength and the system energy gap changes drastically when the coupling operators become non-commutative. These scaling relations can further be explained analytically by the non-equilibrium polaron-transformed Redfield equation. These novel transport properties, arising from the pure quantum effect of non-commutative coupling operators, should generally appear in other non-equilibrium set-ups and driven-systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا