ترغب بنشر مسار تعليمي؟ اضغط هنا

A sharp estimate for the Hilbert transform along finite order lacunary sets of directions

69   0   0.0 ( 0 )
 نشر من قبل Francesco Di Plinio
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $D$ be a nonnegative integer and ${mathbf{Theta}}subset S^1$ be a lacunary set of directions of order $D$. We show that the $L^p$ norms, $1<p<infty$, of the maximal directional Hilbert transform in the plane $$ H_{{mathbf{Theta}}} f(x):= sup_{vin {mathbf{Theta}}} Big|mathrm{p.v.}int_{mathbb R }f(x+tv)frac{mathrm{d} t}{t}Big|, qquad x in {mathbb R}^2, $$ are comparable to $(log#{mathbf{Theta}})^frac{1}{2}$. For vector fields $mathsf{v}_D$ with range in a lacunary set of of order $D$ and generated using suitable combinations of truncations of Lipschitz functions, we prove that the truncated Hilbert transform along the vector field $mathsf{v}_D$, $$ H_{mathsf{v}_D,1} f(x):= mathrm{p.v.} int_{ |t| leq 1 } f(x+tmathsf{v}_D(x)) ,frac{mathrm{d} t}{t}, $$ is $L^p$-bounded for all $1<p<infty$. These results extend previous bounds of the first author with Demeter, and of Guo and Thiele.



قيم البحث

اقرأ أيضاً

A recent result by Parcet and Rogers is that finite order lacunarity characterizes the boundedness of the maximal averaging operator associated to an infinite set of directions in $mathbb{R}^n$. Their proof is based on geometric-combinatorial coverin gs of fat hyperplanes by two-dimensional wedges. Seminal results by Nagel-Stein-Wainger relied on geometric coverings of n-dimensional nature. In this article we find the sharp cardinality estimate for singular integrals along finite subsets of finite order lacunary sets in all dimensions. Previous results only covered the special case of the directional Hilbert transform in dimensions two and three. The proof is new in all dimensions and relies, among other ideas, on a precise covering of the n-dimensional Nagel-Stein-Wainger cone by two-dimensional Parcet-Rogers wedges.
We prove a sharp $L^2to H^{1/2}$ stability estimate for the geodesic X-ray transform of tensor fields of order $0$, $1$ and $2$ on a simple Riemannian manifold with a suitable chosen $H^{1/2}$ norm. We show that such an estimate holds for a family of such $H^{1/2}$ norms, not topologically equivalent, but equivalent on the range of the transform. The reason for this is that the geodesic X-ray transform has a microlocally structured range.
Given two intervals $I, J subset mathbb{R}$, we ask whether it is possible to reconstruct a real-valued function $f in L^2(I)$ from knowing its Hilbert transform $Hf$ on $J$. When neither interval is fully contained in the other, this problem has a u nique answer (the nullspace is trivial) but is severely ill-posed. We isolate the difficulty and show that by restricting $f$ to functions with controlled total variation, reconstruction becomes stable. In particular, for functions $f in H^1(I)$, we show that $$ |Hf|_{L^2(J)} geq c_1 exp{left(-c_2 frac{|f_x|_{L^2(I)}}{|f|_{L^2(I)}}right)} | f |_{L^2(I)} ,$$ for some constants $c_1, c_2 > 0$ depending only on $I, J$. This inequality is sharp, but we conjecture that $|f_x|_{L^2(I)}$ can be replaced by $|f_x|_{L^1(I)}$.
Consider the discrete cubic Hilbert transform defined on finitely supported functions $f$ on $mathbb{Z}$ by begin{eqnarray*} H_3f(n) = sum_{m ot = 0} frac{f(n- m^3)}{m}. end{eqnarray*} We prove that there exists $r <2$ and universal constant $ C$ such that for all finitely supported $f,g$ on $mathbb{Z}$ there exists an $(r,r)$-sparse form ${Lambda}_{r,r}$ for which begin{eqnarray*} left| langle H_3f, g rangle right| leq C {Lambda}_{r,r} (f,g). end{eqnarray*} This is the first result of this type concerning discrete harmonic analytic operators. It immediately implies some weighted inequalities, which are also new in this setting.
Let $W$ denote a matrix $A_2$ weight. In this paper, we implement a scalar argument using the square function to deduce square-function type results for vector-valued functions in $L^2(mathbb{R},mathbb{C}^d)$. These results are then used to study the boundedness of the Hilbert transform and Haar multipliers on $L^2(mathbb{R},mathbb{C}^d)$. Our proof shortens the original argument by Treil and Volberg and improves the dependence on the $A_2$ characteristic. In particular, we prove that the Hilbert transform and Haar multipliers map $L^2(mathbb{R},W,mathbb{C}^d)$ to itself with dependence on on the $A_2$ characteristic at most $[W]_{A_2}^{frac{3}{2}} log [W]_{A_2}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا