ﻻ يوجد ملخص باللغة العربية
We analytically study the non-linear stability of a spherically symmetric wormhole supported by an infinitesimally thin brane of negative tension, which has been devised by Barcelo and Visser. We consider a situation in which a thin spherical shell composed of dust falls into an initially static wormhole; The dust shell plays a role of the non-linear disturbance. The self-gravity of the falling dust shell is completely taken into account through Israels formalism of the metric junction. When the dust shell goes through the wormhole, it necessarily collides with the brane supporting the wormhole. We assume the interaction between these shells is only gravity and show the condition under which the wormhole stably persists after the dust shell goes through it.
The stability of one type of the static Ellis-Bronnikov-Morris-Thorne wormholes is considered. These wormholes filled with radial magnetic field and phantom dust with a negative energy density.
In this paper we attempt to examine the possibility of construction of a traversable wormhole on the Randall-Sundrum braneworld with ordinary matter employing the Kuchowicz potential as one of the metric potentials. In this scenario, the wormhole sha
We consider scalar and axial gravitational perturbations of black hole solutions in brane world scenarios. We show that perturbation dynamics is surprisingly similar to the Schwarzschild case with strong indications that the models are stable. Quasin
We perform numerical evolutions of the fully non-linear Einstein-(complex, massive)Klein-Gordon and Einstein-(complex)Proca systems, to assess the formation and stability of spinning bosonic stars. In the scalar/vector case these are known as boson/P
The aim of this paper is to study the stability of soliton-like static solutions via non-linear simulations in the context of a special class of massive tensor-multi-scalar-theories of gravity whose target space metric admits Killing field(s) with a