ﻻ يوجد ملخص باللغة العربية
Core-collapse supernovae are found in regions associated with recent massive star formation. The stellar population observed around the location of a SN can be used as a probe of the origins of the progenitor star. We apply a Bayesian mixture model to fit isochrones to the massive star population around twelve Type IIP SNe, for which constraints on the progenitors are also available from fortuitous pre-explosion images. Using the high-resolution Hubble Space Telescope Advanced Camera for Surveys and Wide Field Camera 3, we study the massive star population found within 100pc of each our target SNe. For most of the SNe in our sample, we find that there are multiple age components in the surrounding stellar populations. In the cases of SNe~2003gd and 2005cs, we find that the progenitor does not come from the youngest stellar population component and, in fact, these relatively low mass progenitors ($sim 8M_{odot}$) are found in close proximity to stars as massive as $15$ and $50-60M_{odot}$, respectively. Overall, the field extinction (Galactic and host) derived for these populations is $sim 0.3,mathrm{mags}$ higher than the extinction that was generally applied in previously reported progenitor analyses. We also find evidence, in particular for SN~2004dj, for significant levels of differential extinction. Our analysis for SN~2008bk suggests a significantly lower extinction for the population than the progenitor, but the lifetime of the population and mass determined from pre-explosion images agree. Overall, assuming that the appropriate age component can be suitably identified from the multiple stellar population components present, we find that our Bayesian approach to studying resolved stellar populations can match progenitor masses determined from direct imaging to within $pm 3M_{odot}$.
The massive star origins for Type IIP supernovae (SNe) have been established through direct detection of their red supergiants progenitors in pre-explosion observations; however, there has been limited success in the detection of the progenitors of H
Herein we analyse late-time (post-plateau; 103 < t < 1229 d) optical spectra of low-redshift (z < 0.016), hydrogen-rich Type IIP supernovae (SNe IIP). Our newly constructed sample contains 91 nebular spectra of 38 SNe IIP, which is the largest datase
The binary fraction of a stellar population can have pronounced effects on its properties, and in particular the number counts of different massive star types, and the relative subtype rates of the supernovae which end their lives. Here we use binary
The acquisition of late-time imaging is an important step in the analysis of pre-explosion observations of the progenitors of supernovae. We present late-time HST ACS WFC observations of the sites of five Type IIP SNe: 1999ev, 2003gd, 2004A, 2005cs a
Type IIP Supernovae (SNe) are expected to arise from Red Supergiant stars (RSGs). These stars have observed mass-loss rates that span more than two orders of magnitude, from $< 10^{-6}$ solar masses yr$^{-1}$ to almost $ 10^{-4} $ solar masses yr$^{-