ترغب بنشر مسار تعليمي؟ اضغط هنا

A Late-Time View of the Progenitors of Five Type IIP Supernovae

85   0   0.0 ( 0 )
 نشر من قبل Justyn Maund
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Maund




اسأل ChatGPT حول البحث

The acquisition of late-time imaging is an important step in the analysis of pre-explosion observations of the progenitors of supernovae. We present late-time HST ACS WFC observations of the sites of five Type IIP SNe: 1999ev, 2003gd, 2004A, 2005cs and 2006my. Observations were conducted using the F435W, F555W and F814W filters. We confirm the progenitor identifications for SNe 2003gd, 2004A and 2005cs, through their disappearance. We find that a source previously excluded as being the progenitor of SN 2006my has now disappeared. The late-time observations of the site of SN 1999ev cast significant doubt over the nature of the source previously identified as the progenitor in pre-explosion WFPC2 images. The use of image subtraction techniques yields improved precision over photometry conducted on just the pre-explosion images alone. In particular, we note the increased depth of detection limits derived on pre-explosion frames in conjunction with late-time images. We use SED fitting techniques to explore the effect of different reddening components towards the progenitors. For SNe 2003gd and 2005cs, the pre-explosion observations are sufficiently constraining that only limited amounts of dust (either interstellar or circumstellar) are permitted. Assuming only a Galactic reddening law, we determine the initial masses for the progenitors of SNe 2003gd, 2004A, 2005cs and 2006my of 8.4+/-2.0, 12.0+/-2.1, 9.5(+3.4,-2.2) and 9.8+/-1.7Msun, respectively.


قيم البحث

اقرأ أيضاً

Herein we analyse late-time (post-plateau; 103 < t < 1229 d) optical spectra of low-redshift (z < 0.016), hydrogen-rich Type IIP supernovae (SNe IIP). Our newly constructed sample contains 91 nebular spectra of 38 SNe IIP, which is the largest datase t of its kind ever analysed in one study, and many of the objects have complementary photometric data. We determined the peak and total luminosity, velocity of the peak, HWHM intensity, and profile shape for many emission lines. Temporal evolution of these values and various flux ratios are studied. We also investigate the correlations between these measurements and photometric observables, such as the peak and plateau absolute magnitudes and the late-time light curve decline rates in various optical bands. The strongest and most robust result we find is that the luminosities of all spectral features (except those of helium) tend to be higher in objects with steeper late-time V-band decline rates. A steep late-time V-band slope likely arises from less efficient trapping of gamma-rays and positrons, which could be caused by multidimensional effects such as clumping of the ejecta or asphericity of the explosion itself. Furthermore, if gamma-rays and positrons can escape more easily, then so can photons via the observed emission lines, leading to more luminous spectral features. It is also shown that SNe IIP with larger progenitor stars have ejecta with a more physically extended oxygen layer that is well-mixed with the hydrogen layer. In addition, we find a subset of objects with evidence for asymmetric Ni-56 ejection, likely bipolar in shape. We also compare our observations to theoretical late-time spectral models of SNe IIP from two separate groups and find moderate-to-good agreement with both sets of models. Our SNe IIP spectra are consistent with models of 12-15 M_Sun progenitor stars having relatively low metallicity (Z $le$ 0.01).
215 - Ryan Chornock 2009
Type II-plateau supernovae (SNe IIP) are the results of the explosions of red supergiants and are the most common subclass of core-collapse supernovae. Past observations have shown that the outer layers of the ejecta of SNe IIP are largely spherical, but the degree of asphericity increases toward the core. We present evidence for high degrees of asphericity in the inner cores of three recent SNe IIP (SNe 2006my, 2006ov, and 2007aa), as revealed by late-time optical spectropolarimetry. The three objects were all selected to have very low interstellar polarization (ISP), which minimizes the uncertainties in ISP removal and allows us to use the continuum polarization as a tracer of asphericity. The three objects have intrinsic continuum polarizations in the range of 0.83-1.56% in observations taken after the end of the photometric plateau, with the polarization dropping to almost zero at the wavelengths of strong emission lines. Our observations of SN 2007aa at earlier times, taken on the photometric plateau, show contrastingly smaller continuum polarizations (~0.1%). The late-time H-alpha and [O I] line profiles of SN 2006ov provide further evidence for asphericities in the inner ejecta. Such high core polarizations in very ordinary core-collapse supernovae provide further evidence that essentially all core-collapse supernova explosions are highly aspherical, even if the outer parts of the ejecta show only small deviations from spherical symmetry.
We review all the models proposed for the progenitor systems of Type Ia supernovae and discuss the strengths and weaknesses of each scenario when confronted with observations. We show that all scenarios encounter at least a few serious diffculties, i f taken to represent a comprehensive model for the progenitors of all Type Ia supernovae (SNe Ia). Consequently, we tentatively conclude that there is probably more than one channel leading SNe Ia. While the single-degenerate scenario (in which a single white dwarf accretes mass from a normal stellar companion) has been studied in some detail, the other scenarios will need a similar level of scrutiny before any firm conclusions can be drawn.
A non-local-thermodynamic-equilibrium (NLTE) level population model of the first and second ionisation stages of iron, nickel and cobalt is used to fit a sample of XShooter optical + near-infrared (NIR) spectra of Type Ia supernovae (SNe Ia). From th e ratio of the NIR lines to the optical lines limits can be placed on the temperature and density of the emission region. We find a similar evolution of these parameters across our sample. Using the evolution of the Fe II 12$,$570$,mathring{A},$to 7$,$155$,mathring{A},$line as a prior in fits of spectra covering only the optical wavelengths we show that the 7200$,mathring{A},$feature is fully explained by [Fe II] and [Ni II] alone. This approach allows us to determine the abundance of Ni II$,$/$,$Fe II for a large sample of 130 optical spectra of 58 SNe Ia with uncertainties small enough to distinguish between Chandrasekhar mass (M$_{text{Ch}}$) and sub-Chandrasekhar mass (sub-M$_{text{Ch}}$) explosion models. We conclude that the majority (85$%$) of normal SNe Ia have a Ni/Fe abundance that is in agreement with predictions of sub-M$_{text{Ch}}$ explosion simulations of $sim Z_odot$ progenitors. Only a small fraction (11$%$) of objects in the sample have a Ni/Fe abundance in agreement with M$_{text{Ch}}$ explosion models.
We compute an extensive set of early-time spectra of supernovae interacting with circumstellar material using the radiative transfer code CMFGEN. Our models are applicable to events observed from 1 to a few days after explosion. Using these models, w e constrain the progenitor and explosion properties of a sample of 17 observed interacting supernovae at early-times. Because massive stars have strong mass loss, these spectra provide valuable information about supernova progenitors, such as mass-loss rates, wind velocities, and surface abundances. We show that these events span a wide range of explosion and progenitor properties, exhibiting supernova luminosities in the 1e8 to 1e12 Lsun range, temperatures from 10000 to 60000 K, progenitor mass-loss rates from a few 1e-4 up to 1 Msun/yr, wind velocities from 100 to 800 km/s, and surface abundances from solar-like to H-depleted. Our results suggest that many progenitors of supernovae interacting with circumstellar material have significantly increased mass-loss before explosion compared to what massive stars show during the rest of their lifetimes. We also infer a lack of correlation between surface abundances and mass-loss rates. This may point to the pre-explosion mass-loss mechanism being independent of stellar mass. We find that the majority of these events have CNO-processed surface abundances. In the single star scenario this points to a preference towards high-mass RSGs as progenitors of interacting SNe, while binary evolution could impact this conclusion. Our models are publicly available and readily applicable to analyze results from ongoing and future large scale surveys such as the Zwicky Transient Factory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا