ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of eccentricity and inclination of hot protoplanets embedded in radiative discs

89   0   0.0 ( 0 )
 نشر من قبل Henrik Eklund
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the evolution of the eccentricity and inclination of protoplanetary embryos and low-mass protoplanets (from a fraction of an Earth mass to a few Earth masses) embedded in a protoplanetary disc, by means of three dimensional hydrodynamics calculations with radiative transfer in the diffusion limit. When the protoplanets radiate in the surrounding disc the energy released by the accretion of solids, their eccentricity and inclination experience a growth toward values which depend on the luminosity to mass ratio of the planet, which are comparable to the discs aspect ratio and which are reached over timescales of a few thousand years. This growth is triggered by the appearance of a hot, under-dense region in the vicinity of the planet. The growth rate of the eccentricity is typically three times larger than that of the inclination. In long term calculations, we find that the excitation of eccentricity and the excitation of inclination are not independent. In the particular case in which a planet has initially a very small eccentricity and inclination, the eccentricity largely overruns the inclination. When the eccentricity reaches its asymptotic value, the growth of inclination is quenched, yielding an eccentric orbit with a very low inclination. As a side result, we find that the eccentricity and inclination of non-luminous planets are damped more vigorously in radiative discs than in isothermal discs.

قيم البحث

اقرأ أيضاً

Discs in binaries have a complex behavior because of the perturbations of the companion star. Planet formation in binary-star systems both depend on the companion star parameters and on the properties of the circumstellar disc. An eccentric disc may increase the impact velocity of planetesimals and therefore jeopardize the accumulation process. We model the evolution of discs in close binaries including the effects of self-gravity and adopting different prescriptions to model the discs radiative properties. We focus on the dynamical properties and evolutionary tracks of the discs. We use the hydrodynamical code FARGO and we include in the energy equation heating and cooling effects. Radiative discs have a lower disc eccentricity compared to locally isothermal discs with same temperature profile. As a consequence, we do not observe the formation of an internal elliptical low density region as in locally isothermal disc models. However, the disc eccentricity depends on the disc mass through the opacities. Akin to locally isothermal disc models, self-gravity forces the discs longitude of pericenter to librate about a fixed orientation with respect to the binary apsidal line ($pi$). The discs radiative properties play an important role in the evolution of discs in binaries. A radiative disc has an overall shape and internal structure that are significantly different compared to a locally isothermal disc with same temperature profile. This is an important finding both for describing the evolutionary track of the disc during its progressive mass loss, and for planet formation since the internal structure of the disc is relevant for planetesimals growth in binary systems. The non-symmetrical distribution of mass in these discs causes large eccentricities for planetesimals that may affect their growth.
As of today ten circumbinary planets orbiting solar type main sequence stars have been discovered. Nearly all of them orbit around the central binary very closely to the region of instability where it is difficult to form them in situ. It is assumed that they formed further out and migrated to their observed position. We extend previous studies to a more realistic thermal disc structure and determine what parameter influence the final parking location of a planet around a binary star. We perform two-dimensional numerical simulations of viscous accretion discs around a central binary that include viscous heating and radiative cooling from the disc surfaces. We vary the binary eccentricity as well as disc viscosity and mass. Concerning the disc evolution we find that it can take well over 100000 binary orbits until an equilibrium state is reached. As seen previously, we find that the central cavity opened by the binary becomes eccentric and precesses slowly in a prograde sense. Embedded planets migrate to the inner edge of the disc. In cases of lower disc viscosity they migrate further in maintaining a circular orbit, while for high viscosity they are parked further out on an eccentric orbit. The final location of an embedded planet is linked to its ability to open a gap in the disc. Gap opening planets separate inner from outer disc, preventing eccentricity excitation in the latter and making it more circular. This allows embedded planets to migrate closer to the binary, in agreement with the observations. The necessary condition for gap opening and the final planet position depend on the planet mass and disc viscosity.
We predict magnitudes for young planets embedded in transition discs, still affected by extinction due to material in the disc. We focus on Jupiter-size planets at a late stage of their formation, when the planet has carved a deep gap in the gas and dust distributions and the disc starts being transparent to the planet flux in the infrared (IR). Column densities are estimated by means of three-dimensional hydrodynamical models, performed for several planet masses. Expected magnitudes are obtained by using typical extinction properties of the disc material and evolutionary models of giant planets. For the simulated cases located at $5.2$ AU in a disc with local unperturbed surface density of $127$ $mathrm{g} cdot mathrm{cm}^{-2}$, a $1$ $M_J$ planet is highly extincted in J-, H- and K-bands, with predicted absolute magnitudes $ge 50$ mag. In L- and M-bands extinction decreases, with planet magnitudes between $25$ and $35$ mag. In the N-band, due to the silicate feature on the dust opacities, the expected magnitude increases to $40$ mag. For a $2$ $M_J$ planet, the magnitudes in J-, H- and K-bands are above $22$ mag, while for L-, M- and N-bands the planet magnitudes are between $15$ and $20$ mag. For the $5$ $M_J$ planet, extinction does not play a role in any IR band, due to its ability to open deep gaps. Contrast curves are derived for the transition discs in CQ Tau, PDS70, HL Tau, TW Hya and HD163296. Planet mass upper-limits are estimated for the known gaps in the last two systems.
The minor planets on orbits that are dynamically stable in Neptunes 1:1 resonance on Gyr timescales were likely emplaced by Neptunes outward migration. We explore the intrinsic libration amplitude, eccentricity, and inclination distribution of Neptun es stable Trojans, using the detections and survey efficiency of the Outer Solar System Origins Survey (OSSOS) and Pan-STARRS1. We find that the libration amplitude of the stable Neptunian Trojan population can be well modeled as a Rayleigh distribution with a libration amplitude width $sigma_{A_phi}$ of 15$^circ$. When taken as a whole, the Neptune Trojan population can be acceptably modeled with a Rayleigh eccentricity distribution of width $sigma_e$ of 0.045 and a typical sin(i) x Gaussian inclination distribution with a width $sigma_i$ of 14 +/- 2 degrees. However, these distributions are only marginally acceptable. This is likely because, even after accounting for survey detection biases, the known large Hr < 8 and small Hr >= 8 Neptune Trojans appear to have markedly different eccentricities and inclinations. We propose that like the classical Kuiper belt, the stable intrinsic Neptunian Trojan population have dynamically `hot and dynamically `cold components to its eccentricity/inclination distribution, with $sigma_{e-cold}$ ~ 0.02 / $sigma_{i-cold}$ ~ 6$^circ$ and $sigma_{e-hot}$~ 0.05 / $sigma_{i-hot}$ ~ 18$^circ$. In this scenario, the `cold L4 Neptunian Trojan population lacks the Hr >= 8 members and has 13 +11/-6 `cold Trojans with Hr < 8. On the other hand, the `hot L4 Neptunian Trojan population has 136 +57/-48 Trojans with Hr < 10 -- a population 2.4 times greater than that of the L4 Jovian Trojans in the same luminosity range.
Gas giant planets may form early-on during the evolution of protostellar discs, while these are relatively massive. We study how Jupiter-mass planet-seeds (termed protoplanets) evolve in massive, but gravitationally stable (Q>1.5), discs using radiat ive hydrodynamic simulations. We find that the protoplanet initially migrates inwards rapidly, until it opens up a gap in the disc. Thereafter, it either continues to migrate inwards on a much longer timescale or starts migrating outwards. Outward migration occurs when the protoplanet resides within a gap with gravitationally unstable edges, as a high fraction of the accreted gas is high angular momentum gas from outside the protoplanets orbit. The effect of radiative heating from the protoplanet is critical in determining the direction of the migration and the eccentricity of the protoplanet. Gap opening is facilitated by efficient cooling that may not be captured by the commonly used beta-cooling approximation. The protoplanet initially accretes at a high rate (1e-3Mj/yr), and its accretion luminosity could be a few tenths of the host stars luminosity, making the protoplanet easily observable (albeit only for a short time). Due to the high gas accretion rate, the protoplanet generally grows above the deuterium-burning mass-limit. Protoplanet radiative feedback reduces its mass growth so that its final mass is near the brown dwarf-planet boundary. The fate of a young planet-seed is diverse and could vary from a gas giant planet on a circular orbit at a few AU from the central star to a brown dwarf on an eccentric, wide orbit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا