ترغب بنشر مسار تعليمي؟ اضغط هنا

Detectability of embedded protoplanets from hydrodynamical simulations

98   0   0.0 ( 0 )
 نشر من قبل Enrique Sanchis
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We predict magnitudes for young planets embedded in transition discs, still affected by extinction due to material in the disc. We focus on Jupiter-size planets at a late stage of their formation, when the planet has carved a deep gap in the gas and dust distributions and the disc starts being transparent to the planet flux in the infrared (IR). Column densities are estimated by means of three-dimensional hydrodynamical models, performed for several planet masses. Expected magnitudes are obtained by using typical extinction properties of the disc material and evolutionary models of giant planets. For the simulated cases located at $5.2$ AU in a disc with local unperturbed surface density of $127$ $mathrm{g} cdot mathrm{cm}^{-2}$, a $1$ $M_J$ planet is highly extincted in J-, H- and K-bands, with predicted absolute magnitudes $ge 50$ mag. In L- and M-bands extinction decreases, with planet magnitudes between $25$ and $35$ mag. In the N-band, due to the silicate feature on the dust opacities, the expected magnitude increases to $40$ mag. For a $2$ $M_J$ planet, the magnitudes in J-, H- and K-bands are above $22$ mag, while for L-, M- and N-bands the planet magnitudes are between $15$ and $20$ mag. For the $5$ $M_J$ planet, extinction does not play a role in any IR band, due to its ability to open deep gaps. Contrast curves are derived for the transition discs in CQ Tau, PDS70, HL Tau, TW Hya and HD163296. Planet mass upper-limits are estimated for the known gaps in the last two systems.



قيم البحث

اقرأ أيضاً

In contrast to the water-poor inner solar system planets, stochasticity during planetary formation and order of magnitude deviations in exoplanet volatile contents suggest that rocky worlds engulfed in thick volatile ice layers are the dominant famil y of terrestrial analogues among the extrasolar planet population. However, the distribution of compositionally Earth-like planets remains insufficiently constrained, and it is not clear whether the solar system is a statistical outlier or can be explained by more general planetary formation processes. Here we employ numerical models of planet formation, evolution, and interior structure, to show that a planets bulk water fraction and radius are anti-correlated with initial $^{26}$Al levels in the planetesimal-based accretion framework. The heat generated by this short-lived radionuclide rapidly dehydrates planetesimals prior to accretion onto larger protoplanets and yields a system-wide correlation of planet bulk abundances, which, for instance, can explain the lack of a clear orbital trend in the water budgets of the TRAPPIST-1 planets. Qualitatively, our models suggest two main scenarios of planetary systems formation: high-$^{26}$Al systems, like our solar system, form small, water-depleted planets, whereas those devoid of $^{26}$Al predominantly form ocean worlds, where the mean planet radii between both scenarios deviate by up to about 10%.
We present the discovery of a spatially unresolved source of sub-millimeter continuum emission ($lambda=855$ $mu$m) associated with a young planet, PDS 70 c, recently detected in H$alpha$ emission around the 5 Myr old T Tauri star PDS 70. We interpre t the emission as originating from a dusty circumplanetary disk with a dust mass between $2times10^{-3}$ and $4.2 times 10^{-3}$ Earth masses. Assuming a standard gas-to-dust ratio of 100, the ratio between the total mass of the circumplanetary disk and the mass of the central planet would be between $10^{-4}-10^{-5}$. Furthermore, we report the discovery of another compact continuum source located $0.074pm0.013$ South-West of a second known planet in this system, PDS 70 b, that was previously detected in near-infrared images. We speculate that the latter source might trace dust orbiting in proximity of the planet, but more sensitive observations are required to unveil its nature.
We study the evolution of the eccentricity and inclination of protoplanetary embryos and low-mass protoplanets (from a fraction of an Earth mass to a few Earth masses) embedded in a protoplanetary disc, by means of three dimensional hydrodynamics cal culations with radiative transfer in the diffusion limit. When the protoplanets radiate in the surrounding disc the energy released by the accretion of solids, their eccentricity and inclination experience a growth toward values which depend on the luminosity to mass ratio of the planet, which are comparable to the discs aspect ratio and which are reached over timescales of a few thousand years. This growth is triggered by the appearance of a hot, under-dense region in the vicinity of the planet. The growth rate of the eccentricity is typically three times larger than that of the inclination. In long term calculations, we find that the excitation of eccentricity and the excitation of inclination are not independent. In the particular case in which a planet has initially a very small eccentricity and inclination, the eccentricity largely overruns the inclination. When the eccentricity reaches its asymptotic value, the growth of inclination is quenched, yielding an eccentric orbit with a very low inclination. As a side result, we find that the eccentricity and inclination of non-luminous planets are damped more vigorously in radiative discs than in isothermal discs.
In recent years hydrodynamical (HD) models have become important to describe the gas kinematics in protoplanetary disks, especially in combination with models of photoevaporation and/or magnetic-driven winds. We focus on diagnosing the the vertical e xtent of the VSI at 203 cells per scale height and allude at what resolution per scale height we obtain convergence. Finally, we determine the regions where EUV, FUV and X-Rays are dominant in the disk. We perform global HD simulations using the PLUTO code. We adopt a global isothermal accretion disk setup, 2.5D (2 dimensions, 3 components) which covers a radial domain from 0.5 to 5.0 and an approximately full meridional extension. We determine the 50 cells per scale height to be the lower limit to resolve the VSI. For higher resolutions, greater than 50 cells per scale height, we observe the convergence for the saturation level of the kinetic energy. We are also able to identify the growth of the `body modes, with higher growth rate for higher resolution. Full energy saturation and a turbulent steady state is reached after 70 local orbits. We determine the location of the EUV-heated region defined by the radial column density to be 10$^{19}$ cm$^{-2}$ located at $H_mathrm{R}sim9.7$, and the FUV/X-Rays-heated boundary layer defined by 10$^{22}$ cm$^{-2}$ located at $H_mathrm{R}sim6.2$, making it necessary to introduce the need of a hot atmosphere. For the first time, we report the presence of small scale vortices in the r-Z plane, between the characteristic layers of large scale vertical velocity motions. Such vortices could lead to dust concentration, promoting grain growth. Our results highlight the importance to combine photoevaporation processes in the future high-resolution studies of the turbulence and accretion processes in disks.
155 - Th. Maschberger 2011
Recent analyses of mass segregation diagnostics in star forming regions invite a comparison with the output of hydrodynamic simulations of star formation. In this work we investigate the state of mass segregation of stars (i.e. sink particles in the simulations) in the case of hydrodynamical simulations which omit feedback. We first discuss methods to quantify mass segregation in substructured regions, either based on the minimum spanning tree (Allisons Lambda), or through analysis of correlations between stellar mass and local stellar surface number densities. We find that the presence of even a single outlier (i.e. a massive object far from other stars) can cause the Allison Lambda method to describe the system as inversely mass segregated, even where in reality the most massive sink particles are overwhelmingly in the centres of the subclusters. We demonstrate that a variant of the Lambda method is less susceptible to this tendency but also argue for an alternative representation of the data in the plane of stellar mass versus local surface number density. The hydrodynamical simulations show global mass segregation from very early times which continues throughout the simulation, being only mildly influenced during sub-cluster merging. We find that up to approx. 2-3% of the massive sink particles (m > 2.5 Msun) are in relative isolation because they have formed there, although other sink particles can form later in their vicinity. Ejections of massive sinks from subclusters do not contribute to the number of isolated massive sink particles, as the gravitational softening in the calculation suppresses this process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا