ﻻ يوجد ملخص باللغة العربية
The distribution of Bethe roots, solution of the inhomogeneous Bethe equations, which characterize the ground state of the periodic XXX Heisenberg spin-$frac{1}{2}$ chain is investigated. Numerical calculations shows that, for this state, the new inhomogeneous term does not contribute to the Baxter T-Q equation in the thermodynamic limit. Different families of Bethe roots are identified and their large N behaviour are conjectured and validated.
The transfer-matrix eigenvalues of the isotropic open Heisenberg quantum spin-1/2 chain with non-diagonal boundary magnetic fields are known to satisfy a TQ-equation with an inhomogeneous term. We derive here a discrete Wronskian-type formula relatin
For a given polynomial $V(x)in mathbb C[x]$, a random matrix eigenvalues measure is a measure $prod_{1leq i<jleq N}(x_i-x_j)^2 prod_{i=1}^N e^{-V(x_i)}dx_i$ on $gamma^N$. Hermitian matrices have real eigenvalues $gamma=mathbb R$, which generalize to
We construct characteristic identities for the split (polarized) Casimir operators of the simple Lie algebras in defining (minimal fundamental) and adjoint representations. By means of these characteristic identities, for all simple Lie algebras we d
We consider closed XXX spin chains with broken total spin $U(1)$ symmetry within the framework of the modified algebraic Bethe ansatz. We study multiple actions of the modified monodromy matrix entries on the modified Bethe vectors. The obtained form
We consider $mathfrak{gl}_2$-invariant quantum integrable models solvable by the algebraic Bethe ansatz. We show that the form of on-shell Bethe vectors is preserved under certain twist transformations of the monodromy matrix. We also derive the acti