ترغب بنشر مسار تعليمي؟ اضغط هنا

Extremely large non-saturating magnetoresistance and ultrahigh mobility due to topological surface states in metallic Bi2Te3 topological insulator

548   0   0.0 ( 0 )
 نشر من قبل Keshav Shrestha Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Weak antilocalization (WAL) effects in Bi2Te3 single crystals have been investigated at high and low bulk charge carrier concentrations. At low charge carrier density the WAL curves scale with the normal component of the magnetic field, demonstrating the dominance of topological surface states in magnetoconductivity. At high charge carrier density the WAL curves scale with neither the applied field nor its normal component, implying a mixture of bulk and surface conduction. WAL due to topological surface states shows no dependence on the nature (electrons or holes) of the bulk charge carriers. The observations of an extremely large, non-saturating magnetoresistance, and ultrahigh mobility in the samples with lower carrier density further support the presence of surface states. The physical parameters characterizing the WAL effects are calculated using the Hikami-Larkin-Nagaoka formula. At high charge carrier concentrations, there is a greater number of conduction channels and a decrease in the phase coherence length compared to low charge carrier concentrations. The extremely large magnetoresistance and high mobility of topological insulators have great technological value and can be exploited in magneto-electric sensors and memory devices.

قيم البحث

اقرأ أيضاً

222 - Sourabh Barua , K. P. Rajeev , 2014
Bi2Te3 is a member of a new class of materials known as topological insulators which are supposed to be insulating in the bulk and conducting on the surface. However experimental verification of the surface states has been difficult in electrical tra nsport measurements due to a conducting bulk. We report low temperature magnetotransport measurements on single crystal samples of Bi2Te3. We observe metallic character in our samples and large and linear magnetoresistance from 1.5 K to 290 K with prominent Shubnikov-de Haas (SdH) oscillations whose traces persist upto 20 K. Even though our samples are metallic we are able to obtain a Berry phase close to the value of {pi} expected for Dirac fermions of the topological surface states. This indicates that we might have obtained evidence for the topological surface states in metallic single crystals of Bi2Te3. Other physical quantities obtained from the analysis of the SdH oscillations are also in close agreement with those reported for the topological surface states. The linear magnetoresistance observed in our sample, which is considered as a signature of the Dirac fermions of the surface states, lends further credence to the existence of topological surface states.
We report synthesis, structural details and electrical transport properties of topological insulator Bi2Te3. The single crystalline specimens of Bi2Te3 are obtained from high temperature (950C) melt and slow cooling (2C/hour). The resultant crystals were shiny, one piece (few cm) and of bright silver color. The Bi2Te3 crystal is found to be perfect with clear [00l] alignment. The powder XRD pattern being carried out on crushed crystals showed that Bi2Te3 crystallized in R3m symmetry with a = b = 4.3866(2) A, c = 30.4978(13) A and Gamma = 120degree. The Bi position is refined to (0, 0, 0.4038 (9)) at Wyckoff position 6c and of Te are (0, 0, 0) at Wyckoff position 3a and at (0, 0, 0.2039(8)) at 6c. Ambient pressure and low temperature (down to 2K) electrical transport measurements revealed metallic behavior. Magneto transport measurements under magnetic field showed huge non saturating magneto resistance (MR) reaching up to 250% at 2.5K and under 50KOe field. Summarily, the short communication clearly demonstrates that Bi2Te3 topological insulator exhibit non-saturating large positive MR at low temperature of say below 10K. The non saturating MR is seen right up to room temperature albeit with much decreased magnitude. Worth mentioning is the fact that these crystals are bulk in nature and hence the anomalous MR is clearly an intrinsic property and not due to the size effect as reported for nano-wires or thin films of the same.
We discuss the ultrafast evolution of the surface electronic structure of the topological insulator Bi$_2$Te$_3$ following a femtosecond laser excitation. Using time and angle resolved photoelectron spectroscopy, we provide a direct real-time visuali sation of the transient carrier population of both the surface states and the bulk conduction band. We find that the thermalization of the surface states is initially determined by interband scattering from the bulk conduction band, lasting for about 0.5 ps; subsequently, few ps are necessary for the Dirac cone non-equilibrium electrons to recover a Fermi-Dirac distribution, while their relaxation extends over more than 10 ps. The surface sensitivity of our measurements makes it possible to estimate the range of the bulk-surface interband scattering channel, indicating that the process is effective over a distance of 5 nm or less. This establishes a correlation between the nanoscale thickness of the bulk charge reservoir and the evolution of the ultrafast carrier dynamics in the surface Dirac cone.
Large unsaturated magnetoresistance (XMR) with magnitude about 1000% is observed in topological insulator candidate TaSe3 from our high field (up to 38 T) measurements. Two oscillation modes, associated with one hole pocket and two electron pockets i n the bulk, respectively, are detected from our Shubnikov-de Hass (SdH) measurements, consistent with our first-principles calculations. With the detailed Hall measurements performed, our two-band model analysis exhibits an imperfect density ratio n_h/n_e closing 0.9 at T< 20 K , which suggests that the carrier compensations account for the XMR in TaSe3.
We report current-direction dependent or unidirectional magnetoresistance (UMR) in magnetic/nonmagnetic topological insulator (TI) heterostructures, Cr$_x$(Bi$_{1-y}$Sb$_y$)$_{2-x}$Te$_3$/(Bi$_{1-y}$Sb$_y$)$_2$Te$_3$, that is several orders of magnit ude larger than in other reported systems. From the magnetic field and temperature dependence, the UMR is identified to originate from the asymmetric scattering of electrons by magnons. In particular, the large magnitude of UMR is an outcome of spin-momentum locking and a small Fermi wavenumber at the surface of TI. In fact, the UMR is maximized around the Dirac point with the minimal Fermi wavenumber.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا