ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum criticality at the superconductor to insulator transition revealed by specific heat measurements

71   0   0.0 ( 0 )
 نشر من قبل Aviad Frydman
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The superconductor-insulator transition (SIT) is considered an excellent example of a quantum phase transition which is driven by quantum fluctuations at zero temperature. The quantum critical point is characterized by a diverging correlation length and a vanishing energy scale. Low energy fluctuations near quantum criticality may be experimentally detected by specific heat, $c_{rm p}$, measurements. Here, we use a unique highly sensitive experiment to measure $c_{rm p}$ of two-dimensional granular Pb films through the SIT. The specific heat shows the usual jump at the mean field superconducting transition temperature $T_{rm c}^{rm {mf}}$ marking the onset of Cooper pairs formation. As the film thickness is tuned toward the SIT, $T_{rm c}^{rm {mf}}$ is relatively unchanged, while the magnitude of the jump and low temperature specific heat increase significantly. This behaviour is taken as the thermodynamic fingerprint of quantum criticality in the vicinity of a quantum phase transition.

قيم البحث

اقرأ أيضاً

The superconductor-insulator transition (SIT) is an excellent example for a quantum phase transition at zero temperature, dominated by quantum fluctuations. These are expected to be very prominent close to the quantum critical point. So far most of t he experimental study of the SIT has concentrated on transport properties and tunneling experiments which provide indirect information on criticality close to the transition. Here we present an experiment uniquely designed to study the evolution of quantum fluctuations through the quantum critical point. We utilize the Nernst effect, which has been shown to be effective in probing superconducting fluctuation. We measure the Nernst coefficient in amorphous indium oxide films tuned through the SIT and find a large signal on both the superconducting and the insulating sides which peaks close to the critical point. The transverse Peltier coefficient, $alpha_{xy}$ which is the thermodynamic quantity extracted from these measurements, follows quantum critical scaling with critical exponents $ u sim 0.7$ and $z sim 1$ which is consistent with a clean XY model in 2+1 dimensions.
Superconductivity at the interface between the insulators LaAlO3 and SrTiO3 has been tuned with the electric field effect. The data provide evidence for a two dimensional quantum superconductor to insulator (2D-QSI) transition. Here we explore the co mpatibility of this phase transition line with Berezinskii-Kosterlitz-Thouless (BKT) behavior and a 2D-QSI transition. In an intermediate regime, limited by a finite size effect, we uncover remarkable consistency with BKT- criticality, weak localization in the insulating state and non-Drude behavior in the normal state. Our estimates for the critical exponents of the 2D-QSI-transition, z =1 and nu=3, suggest that it belongs to the 3D-xy universality class.
We isolated flux disorder effects on the transport at the critical point of the quantum magnetic field tuned Superconductor to Insulator transition (BSIT). The experiments employed films patterned into geometrically disordered hexagonal arrays. Spati al variations in the flux per unit cell, which grow in a perpendicular magnetic field, constitute flux disorder. The growth of flux disorder with magnetic field limited the number of BSITs exhibited by a single film due to flux matching effects. The critical metallic resistance at successive BSITs grew with flux disorder contrary to predictions of its universality. These results open the door for controlled studies of disorder effects on the universality class of an ubiquitous quantum phase transition.
Typically the disorder that alters the interference of particle waves to produce Anderson localization is potential scattering from randomly placed impurities. Here we show that disorder in the form of random gauge fields that act directly on particl e phases can also drive localization. We present evidence of a superfluid bose glass to insulator transition at a critical level of this gauge field disorder in a nano-patterned array of amorphous Bi islands. This transition shows signs of metallic transport near the critical point characterized by a resistance of order 0.5 h/4e^2 , indicative of a quantum phase transition. The critical disorder also depends on interisland coupling in agreement with recent Quantum Monte Carlo simulations. Finally, these experiments are uniquely connected to theory because they employ a method for controlling a disorder parameter that coincides directly with a term that appears in model Hamiltonians. This correspondence will enable further high fidelity comparisons between theoretical and experimental studies of disorder effects on quantum critical systems.
76 - V. B. Barbeta 2010
Oxides RNiO3 (R = rare-earth, R # La) exhibit a metal-insulator (MI) transition at a temperature TMI and an antiferromagnetic (AF) transition at TN. Specific heat (CP) and anelastic spectroscopy measurements were performed in samples of Nd1-xEuxNiO3, 0 <= x <= 0.35. For x = 0, a peak in CP is observed upon cooling and warming at essentially the same temperature TMI = TN ~ 195 K, although the cooling peak is much smaller. For x >= 0.25, differences between cooling and warming curves are negligible, and two well defined peaks are clearly observed: one at lower temperatures, that define TN, and the other one at TMI. An external magnetic field of 9 T had no significant effect on these results. The elastic compliance (s) and the reciprocal of the mechanical quality factor (Q^-1) of NdNiO3, measured upon warming, showed a very sharp peak at essentially the same temperature obtained from CP, and no peak is observed upon cooling. The elastic modulus hardens below TMI much more sharply upon warming, while the cooling and warming curves are reproducible above TMI. On the other hand, for the sample with x = 0.35, s and Q^-1 curves are very similar upon warming and cooling. The results presented here give credence to the proposition that the MI phase transition changes from first to second order with increasing Eu doping.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا