ﻻ يوجد ملخص باللغة العربية
Typically the disorder that alters the interference of particle waves to produce Anderson localization is potential scattering from randomly placed impurities. Here we show that disorder in the form of random gauge fields that act directly on particle phases can also drive localization. We present evidence of a superfluid bose glass to insulator transition at a critical level of this gauge field disorder in a nano-patterned array of amorphous Bi islands. This transition shows signs of metallic transport near the critical point characterized by a resistance of order 0.5 h/4e^2 , indicative of a quantum phase transition. The critical disorder also depends on interisland coupling in agreement with recent Quantum Monte Carlo simulations. Finally, these experiments are uniquely connected to theory because they employ a method for controlling a disorder parameter that coincides directly with a term that appears in model Hamiltonians. This correspondence will enable further high fidelity comparisons between theoretical and experimental studies of disorder effects on quantum critical systems.
The antiferromagnetic(AFM) insulator-superconductor transition has been always a center of interest in the underlying physics of unconventional superconductors. The quantum phase transition between Mott insulator with AFM and superconductor can be in
Recently superconductivity at the interface between the insulators LaAlO3 and SrTiO3 has been tuned with the electric field effect to an unprecedented range of transition temperatures. Here we perform a detailed finite size scaling analysis to explor
We have studied the thickness-induced superconductor-to-insulator transition in the presence of a magnetic field for a-NbSi thin films. Analyzing the critical behavior of this system within the dirty boson model, we have found a critical exponents pr
In a minimal 2-band model with attractive interactions between fermions, we calculate the gap to single and two-particle excitations, the band-dependent spectral functions, the superfluid density and compressibility using quantum Monte Carlo (QMC) me
The superconductor-insulator transition (SIT) is considered an excellent example of a quantum phase transition which is driven by quantum fluctuations at zero temperature. The quantum critical point is characterized by a diverging correlation length