ترغب بنشر مسار تعليمي؟ اضغط هنا

The importance of preventive feedback: inference from observations of the stellar masses and metallicities of Milky Way dwarf galaxies

111   0   0.0 ( 0 )
 نشر من قبل Yu Lu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dwarf galaxies are known to have remarkably low star formation efficiency due to strong feedback. Adopting the dwarf galaxies of the Milky Way as a laboratory, we explore a flexible semi-analytic galaxy formation model to understand how the feedback processes shape the satellite galaxies of the Milky Way. Using Markov-Chain Monte-Carlo, we exhaustively search a large parameter space of the model and rigorously show that the general wisdom of strong outflows as the primary feedback mechanism cannot simultaneously explain the stellar mass function and the mass--metallicity relation of the Milky Way satellites. An extended model that assumes that a fraction of baryons is prevented from collapsing into low-mass halos in the first place can be accurately constrained to simultaneously reproduce those observations. The inference suggests that two different physical mechanisms are needed to explain the two different data sets. In particular, moderate outflows with weak halo mass dependence are needed to explain the mass--metallicity relation, and prevention of baryons falling into shallow gravitational potentials of low-mass halos (e.g. pre-heating) is needed to explain the low stellar mass fraction for a given subhalo mass.

قيم البحث

اقرأ أيضاً

We use Density Estimation Likelihood-Free Inference, $Lambda$ Cold Dark Matter simulations of $sim 2M$ galaxy pairs, and data from Gaia and the Hubble Space Telescope to infer the sum of the masses of the Milky Way and Andromeda (M31) galaxies, the t wo main components of the Local Group. This method overcomes most of the approximations of the traditional timing argument, makes the writing of a theoretical likelihood unnecessary, and allows the non-linear modelling of observational errors that take into account correlations in the data and non-Gaussian distributions. We obtain an $M_{200}$ mass estimate $M_{rm MW+M31} = 4.6^{+2.3}_{-1.8} times 10^{12} M_{odot}$ ($68 %$ C.L.), in agreement with previous estimates both for the sum of the two masses and for the individual masses. This result is not only one of the most reliable estimates of the sum of the two masses to date, but is also an illustration of likelihood-free inference in a problem with only one parameter and only three data points.
This paper presents an alternative scenario to explain the observed properties of the Milky Way dwarf Spheroidals (MW dSphs). We show that instead of resulting from large amounts of dark matter (DM), the large velocity dispersions observed along thei r lines of sight can be entirely accounted for by dynamical heating of DM-free systems resulting from MW tidal shocks. Such a regime is expected if the progenitors of the MW dwarfs are infalling gas-dominated galaxies. In this case, gas lost through ram-pressure leads to a strong decrease of self-gravity, a phase during which stars can radially expand, while leaving a gas-free dSph in which tidal shocks can easily develop. The DM content of dSphs is widely derived from the measurement of the dSphs self-gravity acceleration projected along the line of sight. We show that the latter strongly anti-correlates with the dSph distance from the MW, and that it is matched in amplitude by the acceleration caused by MW tidal shocks on DM-free dSphs. If correct, this implies that the MW dSphs would have negligible DM content, putting in question, e.g., their use as targets for DM direct searches, or our understanding of the Local Group mass assembly history. Most of the progenitors of the MW dSphs are likely extremely tiny dIrrs, and deeper observations and more accurate modeling are necessary to infer their properties as well as to derive star formation histories of the faintest dSphs.
The vast majority of low-mass satellite galaxies around the Milky Way and M31 appear virtually devoid of cool gas and show no signs of recent or ongoing star formation. Cosmological simulations demonstrate that such quenching is expected and is due t o the harsh environmental conditions that satellites face when joining the Local Group (LG). However, recent observations of Milky Way analogues in the SAGA survey present a very different picture, showing the majority of observed satellites to be actively forming stars, calling into question the realism of current simulations and the typicality of the LG. Here we use the ARTEMIS suite of high-resolution cosmological hydrodynamical simulations to carry out a careful comparison with observations of dwarf satellites in the LG, SAGA, and the Local Volume (LV) survey. We show that differences between SAGA and the LG and LV surveys, as well as between SAGA and the ARTEMIS simulations, can be largely accounted for by differences in the host mass distributions and observational selection effects, specifically that low-mass satellites which have only recently been accreted are more likely to be star-forming, have a higher optical surface brightness, and are therefore more likely to be included in the SAGA survey. This picture is confirmed using data from the deeper LV survey, which shows pronounced quenching at low masses, in accordance with the predictions of LCDM-based simulations.
We present a new model for the formation of stellar halos in dwarf galaxies. We demonstrate that the stars and star clusters that form naturally in the inner regions of dwarfs are expected to migrate from the gas rich, star forming centre to join the stellar spheroid. For dwarf galaxies, this process could be the dominant source of halo stars. The effect is caused by stellar feedback-driven bulk motions of dense gas which, by causing potential fluctuations in the inner regions of the halo, couple to all collisionless components. This effect has been demonstrated to generate cores in otherwise cuspy cold dark matter profiles and is particularly effective in dwarf galaxy haloes. It can build a stellar spheroid with larger ages and lower metallicities at greater radii without requiring an outside-in formation model. Globular cluster-type star clusters can be created in the galactic ISM and then migrate to the spheroid on 100thinspace Myr timescales. Once outside the inner regions they are less susceptible to tidal disruption and are thus long lived; clusters on wider orbits may be easily unbound from the dwarf to join the halo of a larger galaxy during a merger. A simulated dwarf galaxy ($text{M}_{vir}simeq10^{9}text{M}_{odot}$ at $z=5$) is used to examine this gravitational coupling to dark matter and stars.
253 - P.B. Tissera 2013
We investigate the chemical and kinematic properties of the diffuse stellar haloes of six simulated Milky Way-like galaxies from the Aquarius Project. Binding energy criteria are adopted to defined two dynamically distinct stellar populations: the di ffuse inner and outer haloes, which comprise different stellar sub-populations with particular chemical and kinematic characteristics. Our simulated inner- and outer-halo stellar populations have received contributions from debris stars (formed in sub-galactic systems while they were outside the virial radius of the main progenitor galaxies) and endo-debris stars (those formed in gas-rich sub-galactic systems inside the dark matter haloes). The inner haloes possess an additional contribution from disc-heated stars in the range $sim 3 - 30 %$, with a mean of $sim 20% $. Disc-heated stars might exhibit signatures of kinematical support, in particular among the youngest ones. Endo-debris plus disc-heated stars define the so-called insitu stellar populations. In both the inner- and outer-halo stellar populations, we detect contributions from stars with moderate to low [$alpha$/Fe] ratios, mainly associated with the endo-debris or disc-heated sub-populations. The observed abundance gradients in the inner-halo regions are influenced by both the level of chemical enrichment and the relative contributions from each stellar sub-population. Steeper abundance gradients in the inner-halo regions are related to contributions from the disc-heated and endo-debris stars, which tend to be found at lower binding energies than debris stars. (Abridged).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا