ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar haloes of simulated Milky Way-like galaxies: Chemical and kinematic properties

360   0   0.0 ( 0 )
 نشر من قبل Patricia B. Tissera
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P.B. Tissera




اسأل ChatGPT حول البحث

We investigate the chemical and kinematic properties of the diffuse stellar haloes of six simulated Milky Way-like galaxies from the Aquarius Project. Binding energy criteria are adopted to defined two dynamically distinct stellar populations: the diffuse inner and outer haloes, which comprise different stellar sub-populations with particular chemical and kinematic characteristics. Our simulated inner- and outer-halo stellar populations have received contributions from debris stars (formed in sub-galactic systems while they were outside the virial radius of the main progenitor galaxies) and endo-debris stars (those formed in gas-rich sub-galactic systems inside the dark matter haloes). The inner haloes possess an additional contribution from disc-heated stars in the range $sim 3 - 30 %$, with a mean of $sim 20% $. Disc-heated stars might exhibit signatures of kinematical support, in particular among the youngest ones. Endo-debris plus disc-heated stars define the so-called insitu stellar populations. In both the inner- and outer-halo stellar populations, we detect contributions from stars with moderate to low [$alpha$/Fe] ratios, mainly associated with the endo-debris or disc-heated sub-populations. The observed abundance gradients in the inner-halo regions are influenced by both the level of chemical enrichment and the relative contributions from each stellar sub-population. Steeper abundance gradients in the inner-halo regions are related to contributions from the disc-heated and endo-debris stars, which tend to be found at lower binding energies than debris stars. (Abridged).



قيم البحث

اقرأ أيضاً

160 - X. H. Sun , W. Reich 2012
(Abridged) We study the polarisation properties, magnetic field strength, and synchrotron emission scale-height of Milky-Way-like galaxies in comparison with other spiral galaxies. We use our 3D-emission model of the Milky Way Galaxy for viewing the Milky Way from outside at various inclinations as spiral galaxies are observed. When seen edge-on the synchrotron emission from the Milky Way has an exponential scale-height of about 0.74 kpc, which is much smaller than the values obtained from previous models. We find that current analysis methods overestimate the scale-height of synchrotron emission of galaxies by about 10% at an inclination of 80 degree and about 40% at an inclination of 70 degree because of contamination from the disk. The observed RMs for face-on galaxies derived from high-frequency polarisation measurements approximate to the Faraday depths (FDs) when scaled by a factor of two. For edge-on galaxies, the observed RMs are indicative of the orientation of the large-scale magnetic field, but are not well related with the FDs. Assuming energy equipartition between the magnetic field and particles for the Milky Way results in an average magnetic-field strength, which is about two times larger than the intrinsic value for a K factor of 100. The number distribution of the integrated polarisation percentages of a large sample of unresolved Milky-Way-like galaxies peaks at about 4.2% at 4.8 GHz and at about 0.8% at 1.4GHz. Integrated polarisation angles rotated by 90 degree align very well with the position angles of the major axes, implying that unresolved galaxies do not have intrinsic RMs.
We have examined the resolved stellar populations at large galactocentric distances along the minor axis (from 10 kpc up to between 40 and 75 kpc), with limited major axis coverage, of six nearby highly-inclined Milky Way-mass disc galaxies using HST data from the GHOSTS survey. We select red giant branch stars to derive stellar halo density profiles. The projected minor axis density profiles can be approximated by power laws with projected slopes of between $-2$ and $-3.7$ and a diversity of stellar halo masses of $1-6times 10^{9}M_{odot}$, or $2-14%$ of the total galaxy stellar masses. The typical intrinsic scatter around a smooth power law fit is $0.05-0.1$ dex owing to substructure. By comparing the minor and major axis profiles, we infer projected axis ratios $c/a$ at $sim 25$ kpc between $0.4-0.75$. The GHOSTS stellar haloes are diverse, lying between the extremes charted out by the (rather atypical) haloes of the Milky Way and M31. We find a strong correlation between the stellar halo metallicities and the stellar halo masses. We compare our results with cosmological models, finding good agreement between our observations and accretion-only models where the stellar haloes are formed by the disruption of dwarf satellites. In particular, the strong observed correlation between stellar halo metallicity and mass is naturally reproduced. Low-resolution hydrodynamical models have unrealistically high stellar halo masses. Current high-resolution hydrodynamical models appear to predict stellar halo masses somewhat higher than observed but with reasonable metallicities, metallicity gradients and density profiles.
In the $Gaia$ era stellar kinematics are extensively used to study Galactic halo stellar populations, to search for halo structures, and to characterize the interface between the halo and hot disc populations. We use distribution function-based model s of modern datasets with 6D phase space data to qualitatively describe a variety of kinematic spaces commonly used in the study of the Galactic halo. Furthermore, we quantitatively assess how well each kinematic space can separate radially anisotropic from isotropic halo populations. We find that scaled action space (the ``action diamond) is superior to other commonly used kinematic spaces at this task. We present a new, easy to implement selection criterion for members of the radially-anisotropic $Gaia$-Enceladus merger remnant, which we find achieves a sample purity of 82 per cent in our models with respect to contamination from the more isotropic halo. We compare this criterion to literature criteria, finding that it produces the highest purity in the resulting samples, at the expense of a modest reduction in completeness. We also show that selection biases that underlie nearly all contemporary spectroscopic datasets can noticeably impact the $E-L_{z}$ distribution of samples in a manner that may be confused for real substructure. We conclude by providing recommendations for how authors should use stellar kinematics in the future to study the Galactic stellar halo.
We introduce the ARTEMIS simulations, a new set of 42 zoomed-in, high-resolution (baryon particle mass of ~ 2x10^4 Msun/h), hydrodynamical simulations of galaxies residing in haloes of Milky Way mass, simulated with the EAGLE galaxy formation code wi th re-calibrated stellar feedback. In this study, we analyse the structure of stellar haloes, specifically the mass density, surface brightness, metallicity, colour and age radial profiles, finding generally very good agreement with recent observations of local galaxies. The stellar density profiles are well fitted by broken power laws, with inner slopes of ~ -3, outer slopes of ~ -4 and break radii that are typically ~ 20-40 kpc. The break radii generally mark the transition between in situ formation and accretion-driven formation of the halo. The metallicity, colour and age profiles show mild large-scale gradients, particularly when spherically-averaged or viewed along the major axes. Along the minor axes, however, the profiles are nearly flat, in agreement with observations. Overall, the structural properties can be understood by two factors: that in situ stars dominate the inner regions and that they reside in a spatially-flattened distribution that is aligned with the disc. Observations targeting both the major and minor axes of galaxies are thus required to obtain a complete picture of stellar haloes.
203 - Ryan McKinnon 2015
We introduce a dust model for cosmological simulations implemented in the moving-mesh code AREPO and present a suite of cosmological hydrodynamical zoom-in simulations to study dust formation within galactic haloes. Our model accounts for the stellar production of dust, accretion of gas-phase metals onto existing grains, destruction of dust through local supernova activity, and dust driven by winds from star-forming regions. We find that accurate stellar and active galactic nuclei feedback is needed to reproduce the observed dust-metallicity relation and that dust growth largely dominates dust destruction. Our simulations predict a dust content of the interstellar medium which is consistent with observed scaling relations at $z = 0$, including scalings between dust-to-gas ratio and metallicity, dust mass and gas mass, dust-to-gas ratio and stellar mass, and dust-to-stellar mass ratio and gas fraction. We find that roughly two-thirds of dust at $z = 0$ originated from Type II supernovae, with the contribution from asymptotic giant branch stars below 20 per cent for $z gtrsim 5$. While our suite of Milky Way-sized galaxies forms dust in good agreement with a number of key observables, it predicts a high dust-to-metal ratio in the circumgalactic medium, which motivates a more realistic treatment of thermal sputtering of grains and dust cooling channels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا