ترغب بنشر مسار تعليمي؟ اضغط هنا

Almost Buchsbaumness of some rings arising from complexes with isolated singularities

123   0   0.0 ( 0 )
 نشر من قبل Connor Sawaske
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Connor Sawaske




اسأل ChatGPT حول البحث

We study properties of the Stanley-Reisner rings of simplicial complexes with isolated singularities modulo two generic linear forms. Miller, Novik, and Swartz proved that if a complex has homologically isolated singularities, then its Stanley-Reisner ring modulo one generic linear form is Buchsbaum. Here we examine the case of non-homologically isolated singularities, providing many examples in which the Stanley-Reisner ring modulo two generic linear forms is a quasi-Buchsbaum but not Buchsbaum ring.



قيم البحث

اقرأ أيضاً

In the present paper, we consider the problem when the toric ring arising from an integral cyclic polytope is Cohen-Macaulay by discussing Serres condition and we give a complete characterization when that is Gorenstein. Moreover, we study the normal ity of the other semigroup ring arising from an integral cyclic polytope but generated only with its vertices.
184 - Viviana Ene , Juergen Herzog , 2010
In this paper we study monomial ideals attached to posets, introduce generalized Hibi rings and investigate their algebraic and homological properties. The main tools to study these objects are Groebner basis theory, the concept of sortability due to Sturmfels and the theory of weakly polymatroidal ideals.
The aim of this paper is to study integer rounding properties of various systems of linear inequalities to gain insight about the algebraic properties of Rees algebras of monomial ideals and monomial subrings. We study the normality and Gorenstein pr operty--as well as the canonical module and the a-invariant--of Rees algebras and subrings arising from systems with the integer rounding property. We relate the algebraic properties of Rees algebras and monomial subrings with integer rounding properties and present a duality theorem.
91 - Connor Sawaske 2017
We consider simplicial complexes admitting a free action by an abelian group. Specifically, we establish a refinement of the classic result of Hochster describing the local cohomology modules of the associated Stanley--Reisner ring, demonstrating tha t the topological structure of the free action extends to the algebraic setting. If the complex in question is also Buchsbaum, this new description allows for a specialization of Schenzels calculation of the Hilbert series of some of the rings Artinian reductions. In further application, we generalize to the Buchsbaum case the results of Stanley and Adin that provide a lower bound on the $h$-vector of a Cohen-Macaulay complex admitting a free action by a cyclic group of prime order.
Levelness and almost Gorensteinness are well-studied properties on graded rings as a generalized notion of Gorensteinness. In the present paper, we study those properties for the edge rings of the complete multipartite graphs, denoted by $Bbbk[K_{r_1 ,ldots,r_n}]$ with $1 leq r_1 leq cdots leq r_n$. We give the complete characterization of which $Bbbk[K_{r_1,ldots,r_n}]$ is level in terms of $n$ and $r_1,ldots,r_n$. Similarly, we also give the complete characterization of which $Bbbk[K_{r_1,ldots,r_n}]$ is almost Gorenstein in terms of $n$ and $r_1,ldots,r_n$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا