ترغب بنشر مسار تعليمي؟ اضغط هنا

Domain engineering of the metastable domains in the 4f-uniaxial-ferromagnet CeRu$_2$Ga$_2$B

61   0   0.0 ( 0 )
 نشر من قبل Dirk Wulferding
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In search of novel, improved materials for magnetic data storage and spintronic devices, compounds that allow a tailoring of magnetic domain shapes and sizes are essential. Good candidates are materials with intrinsic anisotropies or competing interactions, as they are prone to host various domain phases that can be easily and precisely selected by external tuning parameters such as temperature and magnetic field. Here, we utilize vector magnetic fields to visualize directly the magnetic anisotropy in the uniaxial ferromagnet CeRu$_2$Ga$_2$B. We demonstrate a feasible control both globally and locally of domain shapes and sizes by the external field as well as a smooth transition from single stripe to bubble domains, which opens the door to future applications based on magnetic domain tailoring.



قيم البحث

اقرأ أيضاً

We studied the physical properties of two Kondo-lattice compounds, CeRu$_2$As$_2$ and CeIr$_2$As$_2$, by a combination of electric transport, magnetic and thermodynamic measurements. They are of ThCr$_2$Si$_2$-type and CaBe$_2$Ge$_2$-type crystalline structures, respectively. CeRu$_2$As$_2$ shows localized long-range antiferromagnetic ordering below $T_N$=4.3 K, with a moderate electronic Sommerfeld coefficient $gamma_0$=35 mJ/mol$cdot$K$^2$. A field-induced metamagnetic transition is observed near 2 T below $T_N$. Magnetic susceptibility measurements on aligned CeRu$_2$As$_2$ powders suggest that it has an easy axis and that the cerium moments align uniaxially along $mathbf{c}$ axis. In contrast, CeIr$_2$As$_2$ is a magnetically nonordered heavy-fermion metal with enhanced $gamma_0$$>$300 mJ/mol$cdot$K$^2$. The initial onset Kondo temperatures of the two compounds are respectively 6 K and 30 K. We discuss the role of the crystal structure to the strength of Kondo coupling. This work provides two new dense Kondo-lattice materials for further investigations on electronic correlation, quantum criticality and heavy-electron effects.
We report a detailed study of UGe$_{2}$ single crystals using infrared reflectivity and spectroscopic ellipsometry. The optical conductivity suggests the presence of a low frequency interband transition and a narrow free-carrier response with strong frequency dependence of the scattering rate and effective mass. We observe sharp changes in the low frequency mass and scattering rate below the upper ferromagnetic transition $T_C = 53 K$. The characteristic changes are exhibited most strongly at an energy scale of around 12 meV (100 cm$^{-1}$). They recover their unrenormalized value above $T_C$ and for $omega >$ 40 meV. In contrast no sign of an anomaly is seen at the lower transition temperature of unknown nature $T_x sim$ 30 K, observed in transport and thermodynamic experiments. In the ferromagnetic state we find signatures of a strong coupling to the longitudinal magnetic excitations that have been proposed to mediate unconventional superconductivity in this compound.
200 - J. Yoshida , S. Abe , D. Takahashi 2008
We report linear thermal expansion and magnetostriction measurements for CeRu$_2$Si$_2$ in magnetic fields up to 52.6 mT and at temperatures down to 1 mK. At high temperatures, this compound showed Landau-Fermi-liquid behavior: The linear thermal exp ansion coefficient and the magnetostriction coefficient were proportional to the temperature and magnetic field, respectively. In contrast, a pronounced non-Fermi-liquid effect was found below 50 mK. The negative contribution of thermal expansion and magnetostriction suggests the existence of an additional quantum critical point.
121 - N. Su , F.-Y. Li , Y. Y. Jiao 2019
Critical phenomenon at the phase transition reveals the universal and long-distance properties of the criticality. We study the ferromagnetic criticality of the pyrochlore magnet Lu$_2$V$_2$O$_7$ at the ferromagnetic transition ${T_text{c}approx 70, text{K}}$ from the isotherms of magnetization $M(H)$ via an iteration process and the Kouvel-Fisher method. The critical exponents associated with the transition are determined as ${beta = 0.32(1)}$, ${gamma = 1.41(1)}$, and ${delta = 5.38}$. The validity of these critical exponents is further verified by scaling all the $M(H)$ data in the vicinity of $T_text{c}$ onto two universal curves in the plot of $M/|varepsilon|^beta$ versus $H/|varepsilon|^{beta+gamma}$, where ${varepsilon = T/T_text{c} -1}$. The obtained $beta$ and $gamma$ values show asymmetric behaviors on the ${T < T_text{c}}$ and the ${T > T_text{c}}$ sides, and are consistent with the predicted values of 3D Ising and cubic universality classes, respectively. This makes Lu$_2$V$_2$O$_7$ a rare example in which the critical behaviors associated with a ferromagnetic transition belong to different universality classes. We describe the observed criticality from the Ginzburg-Landau theory with the quartic cubic anisotropy that microscopically originates from the anti-symmetric Dzyaloshinskii-Moriya interaction as revealed by recent magnon thermal Hall effect and theoretical investigations.
We revisited the anisotropy of the heavy-fermion material CeCo$_2$Ga$_8$ by measuring the electrical resistivity and magnetic susceptibility along all the principal $mathbf{a}$-, $mathbf{b}$- and $mathbf{c}$-axes. Resistivity along $mathbf{c}$-axis ( $rho_c$) shows clear Kondo coherence below about 17 K, while both $rho_{a}$ and $rho_{b}$ remain incoherent down to 2 K. The magnetic anisotropy is well understood within the theoretical frame of crystalline electric field effect in combination with magnetic exchange interactions. We found the anisotropy ratio of these magnetic exchange interactions, $|J_{ex}^c/J_{ex}^{a,b}|$, reaches a large value of 4-5. We, therefore, firmly demonstrate that CeCo$_2$Ga$_8$ is a quasi-one-dimensional heavy-fermion compound both electrically and magnetically, and thus provide a realistic example of textit{Kondo chain}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا