ﻻ يوجد ملخص باللغة العربية
Cosmologies including strongly Coupled (SC) Dark Energy (DE) and Warm dark matter (SCDEW) are based on a conformally invariant (CI) attractor solution modifying the early radiative expansion. Then, aside of radiation, a kinetic field $Phi$ and a DM component account for a stationary fraction, $sim 1, %$, of the total energy. Most SCDEW predictions are hardly distinguishable from LCDM, while SCDEW alleviates quite a few LCDM conceptual problems, as well as its difficulties to meet data below the average galaxy scale. The CI expansion begins at the inflation end, when $Phi$ (future DE) possibly plays a role in reheating, and ends at the Higgs scale. Afterwards, a number of viable options is open, allowing for the transition from the CI expansion to the present Universe. In this paper: (i) We show how the attractor is recovered when the spin degrees of freedom decreases. (ii) We perform a detailed comparison of CMB anisotropy and polarization spectra for SCDEW and LCDM, including tensor components, finding negligible discrepancies. (iii) Linear spectra exhibit a greater parameter dependence at large $k$s, but are still consistent with data for suitable parameter choices. (iv) We also compare previous simulation results with fresh data on galaxy concentration. Finally, (v) we outline numerical difficulties at high $k$. This motivates a second related paper, where such problems are treated in a quantitative way.
We present three distinct types of models of dark energy in the form of a scalar field which is explicitly coupled to dark matter. Our construction draws from the pull-back formalism for fluids and generalises the fluid action to involve couplings to
In this first paper we discuss the linear theory and the background evolution of a new class of models we dub SCDEW: Strongly Coupled DE, plus WDM. In these models, WDM dominates todays matter density; like baryons, WDM is uncoupled. Dark Energy is a
We describe the methodology to include nonlinear evolution, including tidal effects, in the computation of subhalo distribution properties in both cold (CDM) and warm (WDM) dark matter universes. Using semi-analytic modeling, we include effects from
We describe a methodology to accurately compute halo mass functions, progenitor mass functions, merger rates and merger trees in non-cold dark matter universes using a self-consistent treatment of the generalized extended Press-Schechter formalism. O
We study a class of early dark energy models which has substantial amount of dark energy in the early epoch of the universe. We examine the impact of the early dark energy fluctuations on the growth of structure and the CMB power spectrum in the line