ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Matter Halo Merger Histories Beyond Cold Dark Matter: I - Methods and Application to Warm Dark Matter

143   0   0.0 ( 0 )
 نشر من قبل Andrew Benson
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Andrew J. Benson




اسأل ChatGPT حول البحث

We describe a methodology to accurately compute halo mass functions, progenitor mass functions, merger rates and merger trees in non-cold dark matter universes using a self-consistent treatment of the generalized extended Press-Schechter formalism. Our approach permits rapid exploration of the subhalo population of galactic halos in dark matter models with a variety of different particle properties or universes with rolling, truncated, or more complicated power spectra. We make detailed comparisons of analytically derived mass functions and merger histories with recent warm dark matter cosmological N-body simulations, and find excellent agreement. We show that, once the accretion of smoothly distributed matter is accounted for, coarse-grained statistics such as the mass accretion history of halos can be almost indistinguishable between cold and warm dark matter cases. However, the halo mass function and progenitor mass functions differ significantly, with the warm dark matter cases being strongly suppressed below the free-streaming scale of the dark matter. We demonstrate the importance of using the correct solution for the excursion set barrier first-crossing distribution in warm dark matter - if the solution for a flat barrier is used instead the truncation of the halo mass function is much slower, leading to an overestimate of the number of low mass halos.

قيم البحث

اقرأ أيضاً

161 - Kris Sigurdson 2009
We show that hidden hot dark matter, hidden-sector dark matter with interactions that decouple when it is relativistic, is a viable dark matter candidate provided it has never been in thermal equilibrium with the particles of the standard model. This hidden hot dark matter may reheat to a lower temperature and number density than the visible Universe and thus account, simply with its thermal abundance, for all the dark matter in the Universe while evading the typical constraints on hot dark matter arising from structure formation. We find masses ranging from ~3 keV to ~10 TeV. While never in equilibrium with the standard model, this class of models may have unique observational signatures in the matter power spectrum or via extra-weak interactions with standard model particles.
We describe the methodology to include nonlinear evolution, including tidal effects, in the computation of subhalo distribution properties in both cold (CDM) and warm (WDM) dark matter universes. Using semi-analytic modeling, we include effects from dynamical friction, tidal stripping, and tidal heating, allowing us to dynamically evolve the subhalo distribution. We calibrate our nonlinear evolution scheme to the CDM subhalo mass function in the Aquarius N-body simulation, producing a subhalo mass function within the range of simulations. We find tidal effects to be the dominant mechanism of nonlinear evolution in the subhalo population. Finally, we compute the subhalo mass function for $m_chi=1.5$ keV WDM including the effects of nonlinear evolution, and compare radial number densities and mass density profiles of subhalos in CDM and WDM models. We show that all three signatures differ between the two dark matter models, suggesting that probes of substructure may be able to differentiate between them.
We present a new Monte-Carlo algorithm to generate merger trees describing the formation history of dark matter halos. The algorithm is a modification of the algorithm of Cole et al (2000) used in the GALFORM semi-analytic galaxy formation model. As such, it is based on the Extended Press-Schechter theory and so should be applicable to hierarchical models with a wide range of power spectra and cosmological models. It is tuned to be in accurate agreement with the conditional mass functions found in the analysis of merger trees extracted from the LCDM Millennium N-body simulation. We present a comparison of its predictions not only with these conditional mass functions, but also with additional statistics of the Millennium Simulation halo merger histories. In all cases we find it to be in good agreement with the Millennium Simulation and thus it should prove to be a very useful tool for semi-analytic models of galaxy formation and for modelling hierarchical structure formation in general. We have made our merger tree generation code and code to navigate the trees available at http://star-www.dur.ac.uk/~cole/merger_trees .
One of the principal discoveries in modern cosmology is that standard model particles (including baryons, leptons and photons) together comprise only 5% of the mass-energy budget of the Universe. The remaining 95% consists of dark energy and dark mat ter (DM). Consequently our picture of the universe is known as {Lambda}CDM, with {Lambda} denoting dark energy and CDM cold dark matter. {Lambda}CDM is being challenged by its apparent inability to explain the low density of DM measured at the centre of cosmological systems, ranging from faint dwarf galaxies to massive clusters containing tens of galaxies the size of the Milky Way. But before making conclusions one should carefully include the effect of gas and stars, which were historically seen as merely a passive component during the assembly of galaxies. We now understand that these can in fact significantly alter the DM component, through a coupling based on rapid gravitational potential fluctuations.
We calculate the incoherent resonant and non-resonant scattering production of sterile neutrinos in the early universe. We find ranges of sterile neutrino masses, vacuum mixing angles, and initial lepton numbers which allow these species to constitut e viable hot, warm, and cold dark matter (HDM, WDM, CDM) candidates which meet observational constraints. The constraints considered here include energy loss in core collapse supernovae, energy density limits at big bang nucleosynthesis, and those stemming from sterile neutrino decay: limits from observed cosmic microwave background anisotropies, diffuse extragalactic background radiation, and Li-6/D overproduction. Our calculations explicitly include matter effects, both effective mixing angle suppression and enhancement (MSW resonance), as well as quantum damping. We for the first time properly include all finite temperature effects, dilution resulting from the annihilation or disappearance of relativistic degrees of freedom, and the scattering-rate-enhancing effects of particle-antiparticle pairs (muons, tauons, quarks) at high temperature in the early universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا