ترغب بنشر مسار تعليمي؟ اضغط هنا

Bandwidth-efficient Storage Services for Mitigating Side Channel Attack

161   0   0.0 ( 0 )
 نشر من قبل Pengfei Zuo
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Data deduplication is able to effectively identify and eliminate redundant data and only maintain a single copy of files and chunks. Hence, it is widely used in cloud storage systems to save storage space and network bandwidth. However, the occurrence of deduplication can be easily identified by monitoring and analyzing network traffic, which leads to the risk of user privacy leakage. The attacker can carry out a very dangerous side channel attack, i.e., learn-the-remaining-information (LRI) attack, to reveal users privacy information by exploiting the side channel of network traffic in deduplication. Existing work addresses the LRI attack at the cost of the high bandwidth efficiency of deduplication. In order to address this problem, we propose a simple yet effective scheme, called randomized redundant chunk scheme (RRCS), to significantly mitigate the risk of the LRI attack while maintaining the high bandwidth efficiency of deduplication. The basic idea behind RRCS is to add randomized redundant chunks to mix up the real deduplication states of files used for the LRI attack, which effectively obfuscates the view of the attacker, who attempts to exploit the side channel of network traffic for the LRI attack. Our security analysis shows that RRCS could significantly mitigate the risk of the LRI attack. We implement the RRCS prototype and evaluate it by using three large-scale real-world datasets. Experimental results demonstrate the efficiency and efficacy of RRCS.



قيم البحث

اقرأ أيضاً

Design companies often outsource their integrated circuit (IC) fabrication to third parties where ICs are susceptible to malicious acts such as the insertion of a side-channel hardware trojan horse (SCT). In this paper, we present a framework for des igning and inserting an SCT based on an engineering change order (ECO) flow, which makes it the first to disclose how effortlessly a trojan can be inserted into an IC. The trojan is designed with the goal of leaking multiple bits per power signature reading. Our findings and results show that a rogue element within a foundry has, today, all means necessary for performing a foundry-side attack via ECO.
Intel has introduced a trusted computing technology, Intel Software Guard Extension (SGX), which provides an isolated and secure execution environment called enclave for a user program without trusting any privilege software (e.g., an operating syste m or a hypervisor) or firmware. Nevertheless, SGX is vulnerable to several side channel attacks (e.g. page-fault-based attack and cache-based attack). In this paper, we explore a new, yet critical side channel attack in SGX, interface-based side channel attack, which can infer the information of the enclave input data. The root cause of the interface-based side channel attack is the input dependent interface invocation information (e.g., interface information and invocation patterns) which can be observed by the untrusted privilege software can reveal the control flow in the enclave. We study the methodology which can be used to conduct the interface-based side channel attack. To illustrate the effectiveness of the interface-based side-channel attacks, we use our methodology to infer whether tracked web pages have been processed by the SGX-assisted NFV platforms and achieve the accuracy of 87.6% and recall of 76.6%. We also identify the packets which belong to the tracked web pages, with the accuracy of 67.9%and recall of 71.1%. We finally propose some countermeasures to defense the interface-based side channel attack in SGX-assisted applications.
This work presents a Cross-device Deep-Learning based Electromagnetic (EM-X-DL) side-channel analysis (SCA), achieving >90% single-trace attack accuracy on AES-128, even in the presence of significantly lower signal-to-noise ratio (SNR), compared to the previous works. With an intelligent selection of multiple training devices and proper choice of hyperparameters, the proposed 256-class deep neural network (DNN) can be trained efficiently utilizing pre-processing techniques like PCA, LDA, and FFT on the target encryption engine running on an 8-bit Atmel microcontroller. Finally, an efficient end-to-end SCA leakage detection and attack framework using EM-X-DL demonstrates high confidence of an attacker with <20 averaged EM traces.
This paper proposes an upgraded electro-magnetic side-channel attack that automatically reconstructs the intercepted data. A novel system is introduced, running in parallel with leakage signal interception and catching compromising data in real-time. Based on deep learning and character recognition the proposed system retrieves more than 57% of characters present in intercepted signals regardless of signal type: analog or digital. The approach is also extended to a protection system that triggers an alarm if the system is compromised, demonstrating a success rate over 95%. Based on software-defined radio and graphics processing unit architectures, this solution can be easily deployed onto existing information systems where information shall be kept secret.
Numerous previous works have studied deep learning algorithms applied in the context of side-channel attacks, which demonstrated the ability to perform successful key recoveries. These studies show that modern cryptographic devices are increasingly t hreatened by side-channel attacks with the help of deep learning. However, the existing countermeasures are designed to resist classical side-channel attacks, and cannot protect cryptographic devices from deep learning based side-channel attacks. Thus, there arises a strong need for countermeasures against deep learning based side-channel attacks. Although deep learning has the high potential in solving complex problems, it is vulnerable to adversarial attacks in the form of subtle perturbations to inputs that lead a model to predict incorrectly. In this paper, we propose a kind of novel countermeasures based on adversarial attacks that is specifically designed against deep learning based side-channel attacks. We estimate several models commonly used in deep learning based side-channel attacks to evaluate the proposed countermeasures. It shows that our approach can effectively protect cryptographic devices from deep learning based side-channel attacks in practice. In addition, our experiments show that the new countermeasures can also resist classical side-channel attacks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا