ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrical magnetochiral effect induced by chiral spin fluctuations

91   0   0.0 ( 0 )
 نشر من قبل Tomoyuki Yokouchi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chirality of matter can produce unique responses in optics, electricity and magnetism. In particular, magnetic crystals transmit their handedness to the magnetism via antisymmetric exchange interaction of relativistic origin, producing helical spin orders as well as their fluctuations. Here we report for a chiral magnet MnSi that chiral spin fluctuations manifest themselves in the electrical magnetochiral effect (eMChE), i.e. the nonreciprocal and nonlinear response characterized by the electrical conductance depending on inner product of electric and magnetic fields $boldsymbol{E} cdot boldsymbol{B}$. Prominent eMChE signals emerge at specific temperature-magnetic field-pressure regions: in the paramagnetic phase just above the helical ordering temperature and in the partially-ordered topological spin state at low temperatures and high pressures, where thermal and quantum spin fluctuations are conspicuous in proximity of classical and quantum phase transitions, respectively. The finding of the asymmetric electron scattering by chiral spin fluctuations may explore new electromagnetic functionality in chiral magnets.


قيم البحث

اقرأ أيضاً

Nonreciprocal resistance, depending on both directions of current ($j$) and magnetic-field ($H$) or magnetization ($M$), is generally expected to emerge in a chiral conductor, and be maximized for $j$ $parallel$ $H$($M$). This phenomenon, electrical magnetochiral effect (eMChE), is empirically known to increase with $H$ in a paramagnetic or fully ferromagnetic state on chiral lattice or to depend on fluctuation properties of a helimagnetic state. We report here the eMChE over a wide temperature range in the chiral-lattice magnet MnGe in which the spin hedgehog lattice (HL) forms with the triple spin-helix modulation vectors. The magnitude of nonreciprocal resistivity is sharply enhanced in the course of the field-induced structural transition of HL from cubic to rhombohedral form. This is attributed to the enhanced asymmetric electron scatterings by vector spin chirality in association with the large thermal fluctuations of spin hedgehogs.
Using a two-dimensional square lattice Heisenberg model with a Rashba-type Dzyaloshinskii-Moriya interaction, we demonstrate that chiral spin fluctuations can give rise to a thermal Hall effect in the absence of any static spin texture or momentum sp ace topology. It is shown by means of Monte Carlo and stochastic spin dynamics simulations that the thermal Hall response is finite at elevated temperature outside of the linear spin wave regime and consistent with the presence of thermal fluctuation-induced nontrivial topology. Our result suggests that the high-fluctuation phases outside of the conventional regime of magnonics may yet be a promising area of exploration for spin-based electronics.
The quantum spin liquid material herbertsmithite is described by an antiferromagnetic Heisenberg model on the kagome lattice with non-negligible Dzyaloshinskii-Moriya interaction~(DMI). A well established phase transition to the $mathbf q=0$ long-ran ge order occurs in this model when the DMI strength increases, but the precise nature of a small-DMI phase remains controversial. Here, we describe a new phase obtained from Schwinger-boson mean-field theory that is stable at small DMI, and which can explain the dispersionless spectrum seen in inelastic neutron scattering experiment by Han et al (Nature (London) 492, 406 (2012)}). It is a time-reversal symmetry breaking $mathbb Z_2$ spin liquid, with the unique property of a small and constant spin gap in an extended region of the Brillouin zone. The phase diagram as a function of DMI and spin size is given, and dynamical spin structure factors are presented.
Effects of the spin-orbit coupling (SOC) and magnetic field on excitonic insulating (EI) states are investigated. We introduce the two-orbital Hubbard model with the crystalline field splitting, which is a minimal model for discussing the exciton con densation in strongly correlated electron systems, and analyze its effective Hamiltonian in the strong correlation limit by using the mean-field theory. In the absence of the SOC and magnetic field, the ground state changes from the nonmagnetic band-insulating state to the EI state by increasing the Hund coupling. In an applied magnetic field, the magnetic moment appears in the EI state, which is continuously connected to the forced ferromagnetic state. On the other hand, in the presence of the SOC, they are separated by a phase boundary. We find that the magnetic susceptibility is strongly enhanced in the EI phase near the boundary with a small SOC. This peculiar behavior is attributed to the low-energy fluctuation of the spin nematicity inherent in the high-spin local state stabilized by the Hund coupling. The present study not only reveals the impact of the SOC for the EI state but also sheds light on the role of quantum fluctuations of the spin nematicity for the EI state.
We report neutron inelastic scattering measurements on the stoichiometric iron-based superconductor LiFeAs. We find evidence for (i) magnetic scattering consistent with strong antiferromagnetic fluctuations, and (ii) an increase in intensity in the s uperconducting state at low energies, similar to the resonant magnetic excitation observed in other iron-based superconductors. The results do not support a recent theoretical prediction of spin-triplet p-wave superconductivity in LiFeAs, and instead suggest that the mechanism of superconductivity is similar to that in the other iron-based superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا