ﻻ يوجد ملخص باللغة العربية
We derive the equations to calculate the reduced width amplitudes (RWA) of the different size clusters and deformed clusters without any approximation. These equations named Laplace expansion method are applicable to the nuclear models which uses the Gaussian wave packets. The advantage of the method is demonstrated by the numerical calculations of the ${}^{16}{rm O}+alpha$ and ${}^{24}{rm Mg}+alpha$ RWAs in $^{20}{rm Ne}$ and $^{28}{rm Si}$.
General expressions for the breakup cross sections in the lab frame for $1+2$ reactions are given in terms of the hyperspherical adiabatic basis. The three-body wave function is expanded in this basis and the corresponding hyperradial functions are o
The possibility to resolve narrow structures in reaction cross sections in calculations with the Lorentz integral transform (LIT) method is studied. To this end we consider a fictitious two-nucleon problem with a low-lying and narrow resonance in the
We perform a detailed comparison of results of the Gamow Shell Model (GSM) and the Gaussian Expansion Method (GEM) supplemented by the complex scaling (CS) method for the same translationally-invariant cluster-orbital shell model (COSM) Hamiltonian.
The inversion of nabla Laplace transform, corresponding to a causal sequence, is considered. Two classical methods, i.e., residual calculation method and partial fraction method are developed to perform the inverse nabla Laplace transform. For the fi
In order to study structure of proto-neutron stars and those in subsequent cooling stages, it is of great interest to calculate inhomogeneous hot and cold nuclear matter in a variety of phases. The finite-temperature Hartree-Fock-Bogoliubov (FT-HFB)