ترغب بنشر مسار تعليمي؟ اضغط هنا

Coordinate-space solver for finite-temperature Hartree-Fock-Bogoliubov calculation using the shifted Krylov method

100   0   0.0 ( 0 )
 نشر من قبل Takashi Nakatsukasa
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to study structure of proto-neutron stars and those in subsequent cooling stages, it is of great interest to calculate inhomogeneous hot and cold nuclear matter in a variety of phases. The finite-temperature Hartree-Fock-Bogoliubov (FT-HFB) theory is a primary choice for this purpose, however, its numerical calculation for superfluid (superconducting) many-fermion systems in three dimensions requires enormous computational costs. To study a variety of phases in the crust of hot and cold neutron stars, we propose an efficient method to perform the FT-HFB calculation with the three-dimensional (3D) coordinate-space representation. Recently, an efficient method based on the contour integral of Greens function with the shifted conjugate-orthogonal conjugate-gradient method has been proposed [Phys. Rev. C 95, 044302 (2017)]. We extend the method to the finite temperature, using the shifted conjugate-orthogonal conjugate-residual method. We benchmark the 3D coordinate-space solver of the FT-HFB calculation for hot isolated nuclei and fcc phase in the inner crust of neutron stars at finite temperature. The computational performance of the present method is demonstrated. Different critical temperatures of the quadrupole and the octupole deformations are confirmed for $^{146}$Ba. The robustness of the shape coexistence feature in $^{184}$Hg is examined. For the neutron-star crust, the deformed neutron-rich Se nuclei embedded in the sea of superfluid low-density neutrons appear in the fcc phase at the nucleon density of 0.045 fm$^{-3}$ and the temperature of $k_B T=200$ keV. The efficiency of the developed solver is demonstrated for nuclei and inhomogeneous nuclear matter at finite temperature. It may provide a standard tool for nuclear physics, especially for the structure of the hot and cold neutron-star matters.

قيم البحث

اقرأ أيضاً

The self-consistent Hartree-Fock-Bogoliubov problem in large boxes can be solved accurately in the coordinate space with the recently developed solvers HFB-AX (2D) and MADNESS-HFB (3D). This is essential for the description of superfluid Fermi system s with complicated topologies and significant spatial extend, such as fissioning nuclei, weakly-bound nuclei, nuclear matter in the neutron star rust, and ultracold Fermi atoms in elongated traps. The HFB-AX solver based on B-spline techniques uses a hybrid MPI and OpenMP programming model for parallel computation for distributed parallel computation, within a node multi-threaded LAPACK and BLAS libraries are used to further enable parallel calculations of large eigensystems. The MADNESS-HFB solver uses a novel multi-resolution analysis based adaptive pseudo-spectral techniques to enable fully parallel 3D calculations of very large systems. In this work we present benchmark results for HFB-AX and MADNESS-HFB on ultracold trapped fermions.
Background: The relativistic Hartree-Fock-Bogoliubov (RHFB) theory has recently been developed and it provides a unified and highly predictive description of both nuclear mean field and pairing correlations. Ground state properties of finite nuclei c an accurately be reproduced without neglecting exchange (Fock) contributions. Purpose: Finite-temperature RHFB (FT-RHFB) theory has not yet been developed, leaving yet unknown its predictions for phase transitions and thermal excitations in both stable and weakly bound nuclei. Method: FT-RHFB equations are solved in a Dirac Woods-Saxon (DWS) basis considering two kinds of pairing interactions: finite or zero range. Such a model is appropriate for describing stable as well as loosely bound nuclei since the basis states have correct asymptotic behaviour for large spatial distributions. Results: Systematic FT-RH(F)B calculations are performed for several semi-magic isotopic/isotonic chains comparing the predictions of a large number of Lagrangians, among which are PKA1, PKO1 and DD-ME2. It is found that the critical temperature for a pairing transition generally follows the rule $T_c = 0.60Delta(0)$ for a finite-range pairing force and $T_c = 0.57Delta(0)$ for a contact pairing force, where $Delta(0)$ is the pairing gap at zero temperature. Two types of pairing persistence are analysed: type I pairing persistence occurs in closed subshell nuclei while type II pairing persistence can occur in loosely bound nuclei strongly coupled to the continuum states. Conclusions: This first FT-RHFB calculation shows very interesting features of the pairing correlations at finite temperature and in finite systems such as pairing re-entrance and pairing persistence.
Recently, the zero-pairing limit of Hartree-Fock-Bogoliubov (HFB) mean-field theory was studied in detail in arXiv:2006.02871. It was shown that such a limit is always well-defined for any particle number A, but the resulting many-body description di ffers qualitatively depending on whether the system is of closed-(sub)shell or open-(sub)shell nature. Here, we extend the discussion to the more general framework of Finite-Temperature HFB (FTHFB) which deals with statistical density operators, instead of pure many-body states. We scrutinize in detail the zero-temperature and zero-pairing limits of such a description, and in particular the combination of both limits. For closed-shell systems, we find that the FTHFB formulism reduces to the (zero-temperature) Hartree-Fock formulism, i.e. we recover the textbook solution. For open-shell systems, however, the resulting description depends on the order in which both limits are taken: if the zero-temperature limit is performed first, the FTHFB density operator demotes to a pure state which is a linear combination of a finite number of Slater determinants, i.e. the case of arXiv:2006.02871. If the zero-pairing limit is performed first, the FTHFB density operator remains a mixture of a finite number of Slater determinants with non-zero entropy, even as the temperature vanishes. These analytical findings are illustrated numerically for a series of Oxygen isotopes.
The coordinate space formulation of the Hartree-Fock-Bogoliubov (HFB) method enables self-consistent treatment of mean-field and pairing in weakly bound systems whose properties are affected by the particle continuum space. Of particular interest are neutron-rich, deformed drip-line nuclei which can exhibit novel properties associated with neutron skin. To describe such systems theoretically, we developed an accurate 2D lattice Skyrme-HFB solver {hfbax} based on B-splines. Compared to previous implementations, we made a number of improvements aimed at boosting the solvers performance. These include: explicit imposition of axiality and space inversion, use of the modified Broydens method to solve self-consistent equations, and a partial parallelization of the code. {hfbax} has been benchmarked against other HFB solvers, both spherical and deformed, and the accuracy of the B-spline expansion was tested by employing the multiresolution wavelet method. Illustrative calculations are carried out for stable and weakly bound nuclei at spherical and very deformed shapes, including constrained fission pathways. In addition to providing new physics insights, {hfbax} can serve as a useful tool to assess the reliability and applicability of coordinate-space and configuration-space HFB solvers, both existing and in development.
195 - G. Scamps , Y. Hashimoto 2019
Background: The Density-constraint Time-dependent Hartree-Fock method is currently the tool of choice to predict fusion cross-sections. However, it does not include pairing correlations, which have been found recently to play an important role. Purpo se: To describe the fusion cross-section with a method that includes the superfluidity and to understand the impact of pairing on both the fusion barrier and cross-section. Method: The density-constraint method is tested first on the following reactions without pairing, $^{16}$O+$^{16}$O and $^{40}$Ca+$^{40}$Ca. A new method is developed, the Density-constraint Time-dependent Hartree-Fock-Bogoliubov method. Using the Gogny-TDHFB code, it is applied to the reactions $^{20}$O+$^{20}$O and $^{44}$Ca+$^{44}$Ca. Results: The Gogny approach for systems without pairing reproduces the experimental data well. The DC-TDHFB method is coherent with the TDHFB fusion threshold. The effect of the phase-lock mechanism is shown for those reactions. Conclusions: The DC-TDHFB method is a useful new tool to determine the fusion potential between superfluid systems and to deduce their fusion cross-sections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا