ترغب بنشر مسار تعليمي؟ اضغط هنا

Big Data in HEP: A comprehensive use case study

96   0   0.0 ( 0 )
 نشر من قبل Oliver Gutsche
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Oliver Gutsche




اسأل ChatGPT حول البحث

Experimental Particle Physics has been at the forefront of analyzing the worlds largest datasets for decades. The HEP community was the first to develop suitable software and computing tools for this task. In recent times, new toolkits and systems collectively called Big Data technologies have emerged to support the analysis of Petabyte and Exabyte datasets in industry. While the principles of data analysis in HEP have not changed (filtering and transforming experiment-specific data formats), these new technologies use different approaches and promise a fresh look at analysis of very large datasets and could potentially reduce the time-to-physics with increased interactivity. In this talk, we present an active LHC Run 2 analysis, searching for dark matter with the CMS detector, as a testbed for Big Data technologies. We directly compare the traditional NTuple-based analysis with an equivalent analysis using Apache Spark on the Hadoop ecosystem and beyond. In both cases, we start the analysis with the official experiment data formats and produce publication physics plots. We will discuss advantages and disadvantages of each approach and give an outlook on further studies needed.



قيم البحث

اقرأ أيضاً

The HEP community is approaching an era were the excellent performances of the particle accelerators in delivering collision at high rate will force the experiments to record a large amount of information. The growing size of the datasets could poten tially become a limiting factor in the capability to produce scientific results timely and efficiently. Recently, new technologies and new approaches have been developed in industry to answer to the necessity to retrieve information as quickly as possible to analyze PB and EB datasets. Providing the scientists with these modern computing tools will lead to rethinking the principles of data analysis in HEP, making the overall scientific process faster and smoother. In this paper, we are presenting the latest developments and the most recent results on the usage of Apache Spark for HEP analysis. The study aims at evaluating the efficiency of the application of the new tools both quantitatively, by measuring the performances, and qualitatively, focusing on the user experience. The first goal is achieved by developing a data reduction facility: working together with CERN Openlab and Intel, CMS replicates a real physics search using Spark-based technologies, with the ambition of reducing 1 PB of public data in 5 hours, collected by the CMS experiment, to 1 TB of data in a format suitable for physics analysis. The second goal is achieved by implementing multiple physics use-cases in Apache Spark using as input preprocessed datasets derived from official CMS data and simulation. By performing different end-analyses up to the publication plots on different hardware, feasibility, usability and portability are compared to the ones of a traditional ROOT-based workflow.
With the rapid advancement of Big Data platforms such as Hadoop, Spark, and Dataflow, many tools are being developed that are intended to provide end users with an interactive environment for large-scale data analysis (e.g., IQmulus). However, there are challenges using these platforms. For example, developers find it difficult to use these platforms when developing interactive and reusable data analytic tools. One approach to better support interactivity and reusability is the use of microlevel modularisation for computation-intensive tasks, which splits data operations into independent, composable modules. However, modularizing data and computation-intensive tasks into independent components differs from traditional programming, e.g., when accessing large scale data, controlling data-flow among components, and structuring computation logic. In this paper, we present a case study on modularizing real world computationintensive tasks that investigates the impact of modularization on processing large scale image data. To that end, we synthesize image data-processing patterns and propose a unified modular model for the effective implementation of computation-intensive tasks on data-parallel frameworks considering reproducibility, reusability, and customization. We present various insights of using the modularity model based on our experimental results from running image processing tasks on Spark and Hadoop clusters.
181 - Qi Zhang , Ling Liu , Calton Pu 2018
Container technique is gaining increasing attention in recent years and has become an alternative to traditional virtual machines. Some of the primary motivations for the enterprise to adopt the container technology include its convenience to encapsu late and deploy applications, lightweight operations, as well as efficiency and flexibility in resources sharing. However, there still lacks an in-depth and systematic comparison study on how big data applications, such as Spark jobs, perform between a container environment and a virtual machine environment. In this paper, by running various Spark applications with different configurations, we evaluate the two environments from many interesting aspects, such as how convenient the execution environment can be set up, what are makespans of different workloads running in each setup, how efficient the hardware resources, such as CPU and memory, are utilized, and how well each environment can scale. The results show that compared with virtual machines, containers provide a more easy-to-deploy and scalable environment for big data workloads. The research work in this paper can help practitioners and researchers to make more informed decisions on tuning their cloud environment and configuring the big data applications, so as to achieve better performance and higher resources utilization.
Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriat e storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed.
Exploratory data analysis tools must respond quickly to a users questions, so that the answer to one question (e.g. a visualized histogram or fit) can influence the next. In some SQL-based query systems used in industry, even very large (petabyte) da tasets can be summarized on a human timescale (seconds), employing techniques such as columnar data representation, caching, indexing, and code generation/JIT-compilation. This article describes progress toward realizing such a system for High Energy Physics (HEP), focusing on the intermediate problems of optimizing data access and calculations for query sized payloads, such as a single histogram or group of histograms, rather than large reconstruction or data-skimming jobs. These techniques include direct extraction of ROOT TBranches into Numpy arrays and compilation of Python analysis functions (rather than SQL) to be executed very quickly. We will also discuss the problem of caching and actively delivering jobs to worker nodes that have the necessary input data preloaded in cache. All of these pieces of the larger solution are available as standalone GitHub repositories, and could be used in current analyses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا