ﻻ يوجد ملخص باللغة العربية
Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed.
Leader-based data replication improves consistency in highly available distributed storage systems via sequential writes to the leader nodes. After a write has been committed by the leaders, follower nodes are written by a multicast mechanism and are
The ever-increasing volumes of scientific data present new challenges for distributed computing and Grid technologies. The emerging Big Data revolution drives exploration in scientific fields including nanotechnology, astrophysics, high-energy physic
Graphs are by nature unifying abstractions that can leverage interconnectedness to represent, explore, predict, and explain real- and digital-world phenomena. Although real users and consumers of graph instances and graph workloads understand these a
Erasure codes are increasingly being studied in the context of implementing atomic memory objects in large scale asynchronous distributed storage systems. When compared with the traditional replication based schemes, erasure codes have the potential
Experimental Particle Physics has been at the forefront of analyzing the worlds largest datasets for decades. The HEP community was the first to develop suitable software and computing tools for this task. In recent times, new toolkits and systems co