ترغب بنشر مسار تعليمي؟ اضغط هنا

Online Learning to Rank in Stochastic Click Models

66   0   0.0 ( 0 )
 نشر من قبل Branislav Kveton
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

Online learning to rank is a core problem in information retrieval and machine learning. Many provably efficient algorithms have been recently proposed for this problem in specific click models. The click model is a model of how the user interacts with a list of documents. Though these results are significant, their impact on practice is limited, because all proposed algorithms are designed for specific click models and lack convergence guarantees in other models. In this work, we propose BatchRank, the first online learning to rank algorithm for a broad class of click models. The class encompasses two most fundamental click models, the cascade and position-based models. We derive a gap-dependent upper bound on the $T$-step regret of BatchRank and evaluate it on a range of web search queries. We observe that BatchRank outperforms ranked bandits and is more robust than CascadeKL-UCB, an existing algorithm for the cascade model.



قيم البحث

اقرأ أيضاً

Learning to rank is an important problem in machine learning and recommender systems. In a recommender system, a user is typically recommended a list of items. Since the user is unlikely to examine the entire recommended list, partial feedback arises naturally. At the same time, diverse recommendations are important because it is challenging to model all tastes of the user in practice. In this paper, we propose the first algorithm for online learning to rank diverse items from partial-click feedback. We assume that the user examines the list of recommended items until the user is attracted by an item, which is clicked, and does not examine the rest of the items. This model of user behavior is known as the cascade model. We propose an online learning algorithm, cascadelsb, for solving our problem. The algorithm actively explores the tastes of the user with the objective of learning to recommend the optimal diverse list. We analyze the algorithm and prove a gap-free upper bound on its n-step regret. We evaluate cascadelsb on both synthetic and real-world datasets, compare it to various baselines, and show that it learns even when our modeling assumptions do not hold exactly.
107 - Guy Uziel 2019
Deep learning models are considered to be state-of-the-art in many offline machine learning tasks. However, many of the techniques developed are not suitable for online learning tasks. The problem of using deep learning models with sequential data be comes even harder when several loss functions need to be considered simultaneously, as in many real-world applications. In this paper, we, therefore, propose a novel online deep learning training procedure which can be used regardless of the neural networks architecture, aiming to deal with the multiple objectives case. We demonstrate and show the effectiveness of our algorithm on the Neyman-Pearson classification problem on several benchmark datasets.
Learning-to-rank (LTR) has become a key technology in E-commerce applications. Most existing LTR approaches follow a supervised learning paradigm from offline labeled data collected from the online system. However, it has been noticed that previous L TR models can have a good validation performance over offline validation data but have a poor online performance, and vice versa, which implies a possible large inconsistency between the offline and online evaluation. We investigate and confirm in this paper that such inconsistency exists and can have a significant impact on AliExpress Search. Reasons for the inconsistency include the ignorance of item context during the learning, and the offline data set is insufficient for learning the context. Therefore, this paper proposes an evaluator-generator framework for LTR with item context. The framework consists of an evaluator that generalizes to evaluate recommendations involving the context, and a generator that maximizes the evaluator score by reinforcement learning, and a discriminator that ensures the generalization of the evaluator. Extensive experiments in simulation environments and AliExpress Search online system show that, firstly, the classic data-based metrics on the offline dataset can show significant inconsistency with online performance, and can even be misleading. Secondly, the proposed evaluator score is significantly more consistent with the online performance than common ranking metrics. Finally, as the consequence, our method achieves a significant improvement (textgreater$2%$) in terms of Conversion Rate (CR) over the industrial-level fine-tuned model in online A/B tests.
Online Learning to Rank (OL2R) eliminates the need of explicit relevance annotation by directly optimizing the rankers from their interactions with users. However, the required exploration drives it away from successful practices in offline learning to rank, which limits OL2Rs empirical performance and practical applicability. In this work, we propose to estimate a pairwise learning to rank model online. In each round, candidate documents are partitioned and ranked according to the models confidence on the estimated pairwise rank order, and exploration is only performed on the uncertain pairs of documents, i.e., emph{divide-and-conquer}. Regret directly defined on the number of mis-ordered pairs is proven, which connects the online solutions theoretical convergence with its expected ranking performance. Comparisons against an extensive list of OL2R baselines on two public learning to rank benchmark datasets demonstrate the effectiveness of the proposed solution.
Personalization is a crucial aspect of many online experiences. In particular, content ranking is often a key component in delivering sophisticated personalization results. Commonly, supervised learning-to-rank methods are applied, which suffer from bias introduced during data collection by production systems in charge of producing the ranking. To compensate for this problem, we leverage contextual multi-armed bandits. We propose novel extensions of two well-known algorithms viz. LinUCB and Linear Thompson Sampling to the ranking use-case. To account for the biases in a production environment, we employ the position-based click model. Finally, we show the validity of the proposed algorithms by conducting extensive offline experiments on synthetic datasets as well as customer facing online A/B experiments.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا