ﻻ يوجد ملخص باللغة العربية
Coordinate descent methods employ random partial updates of decision variables in order to solve huge-scale convex optimization problems. In this work, we introduce new adaptive rules for the random selection of their updates. By adaptive, we mean that our selection rules are based on the dual residual or the primal-dual gap estimates and can change at each iteration. We theoretically characterize the performance of our selection rules and demonstrate improvements over the state-of-the-art, and extend our theory and algorithms to general convex objectives. Numerical evidence with hinge-loss support vector machines and Lasso confirm that the practice follows the theory.
Geometric median (textsc{Gm}) is a classical method in statistics for achieving a robust estimation of the uncorrupted data; under gross corruption, it achieves the optimal breakdown point of 0.5. However, its computational complexity makes it infeas
The Adaptive Multiple Importance Sampling (AMIS) algorithm is aimed at an optimal recycling of past simulations in an iterated importance sampling scheme. The difference with earlier adaptive importance sampling implementations like Population Monte
Monte Carlo methods represent the de facto standard for approximating complicated integrals involving multidimensional target distributions. In order to generate random realizations from the target distribution, Monte Carlo techniques use simpler pro
Probabilistic software analysis aims at quantifying the probability of a target event occurring during the execution of a program processing uncertain incoming data or written itself using probabilistic programming constructs. Recent techniques combi
Reducing the variance of the gradient estimator is known to improve the convergence rate of stochastic gradient-based optimization and sampling algorithms. One way of achieving variance reduction is to design importance sampling strategies. Recently,