ﻻ يوجد ملخص باللغة العربية
Particle-accelerating colliding-wind binaries (PACWBs) are multiple systems made of early-type stars able to accelerate particles up to relativistic velocities. The relativistic particles can interact with different fields (magnetic or radiation) in the colliding-wind region and produce non-thermal emission. In many cases, non-thermal synchrotron radiation might be observable and thus constitute an indicator of the existence of a relativistic particle population in these multiple systems. To date, the catalogue of PACWBs includes about 40 objects spread over many stellar types and evolutionary stages, with no clear trend pointing to privileged subclasses of objects likely to accelerate particles. This paper aims at discussing critically some criteria for selecting new candidates among massive binaries. The subsequent search for non-thermal radiation in these objects is expected to lead to new detections of particle accelerators. On the basis of this discussion, some broad ideas for observation strategies are formulated. At this stage of the investigation of PACWBs, there is no clear reason to consider particle acceleration in massive binaries as an anomaly or even as a rare phenomenon. We therefore consider that several PACWBs will be detected in the forthcoming years, essentially using sensitive radio interferometers which are capable of measuring synchrotron emission from colliding-wind binaries. Prospects for high-energy detections are also briefly addressed.
Massive systems made of two or more stars are known to be the site for interesting physical processes -- including at least in some cases -- particle acceleration. Over the past decade, this topic motivated a particular effort to unveil the propertie
We have compiled a list of 36 O+O and 89 Wolf-Rayet binary candidates in the Milky Way and Magellanic clouds detected with the Chandra, XMM-Newton and ROSAT satellites to probe the connection between their X-ray properties and their system characteri
An increasing number of early-type (O and Wolf-Rayet) colliding wind binaries (CWBs) is known to accelerate particles up to relativistic energies. In this context, non-thermal emission processes such as inverse Compton (IC) scattering are expected to
The long-term (over more than one decade) X-ray emission from two massive stellar systems known to be particle accelerators is investigated using XMM-Newton. Their X-ray properties are interpreted taking into account recent information about their mu
Massive stars in binary systems (as WR140, WR147 or $eta$ Carinae) have long been regarded as potential sources of high-energy $gamma$-rays. The emission is thought to arise in the region where the stellar winds collide and produce relativistic parti