ﻻ يوجد ملخص باللغة العربية
Massive systems made of two or more stars are known to be the site for interesting physical processes -- including at least in some cases -- particle acceleration. Over the past decade, this topic motivated a particular effort to unveil the properties of these systems and characterize the circumstances responsible for the acceleration of particles and the potential role of pre-supernova massive stars in the production of high energy particles in our Galaxy. Although previous studies on this topic were mostly devoted to processes in general, or to a few individual objects in particular, a unified target-oriented census of particle-accelerating colliding-wind binaries (hereafter PACWBs) does not exist yet. This paper aims at making a general and unified census of these systems, emphasizing their main properties. A general discussion includes energetic considerations along with wind properties in relation with non-thermal emission processes that are likely at work in colliding-wind binaries. Finally, some guidelines for future observational and theoretical studies are drawn.
The long-term (over more than one decade) X-ray emission from two massive stellar systems known to be particle accelerators is investigated using XMM-Newton. Their X-ray properties are interpreted taking into account recent information about their mu
Particle-accelerating colliding-wind binaries (PACWBs) are multiple systems made of early-type stars able to accelerate particles up to relativistic velocities. The relativistic particles can interact with different fields (magnetic or radiation) in
Massive stars in binary systems (as WR140, WR147 or $eta$ Carinae) have long been regarded as potential sources of high-energy $gamma$-rays. The emission is thought to arise in the region where the stellar winds collide and produce relativistic parti
We have compiled a list of 36 O+O and 89 Wolf-Rayet binary candidates in the Milky Way and Magellanic clouds detected with the Chandra, XMM-Newton and ROSAT satellites to probe the connection between their X-ray properties and their system characteri
The dynamics of colliding wind binary systems and conditions for efficient particle acceleration therein have attracted multiple numerical studies in the recent years. These numerical models seek an explanation of the thermal and non-thermal emission