ترغب بنشر مسار تعليمي؟ اضغط هنا

Monotonicity of facet numbers of random convex hulls

224   0   0.0 ( 0 )
 نشر من قبل Christoph Thaele
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $X_1,ldots,X_n$ be independent random points that are distributed according to a probability measure on $mathbb{R}^d$ and let $P_n$ be the random convex hull generated by $X_1,ldots,X_n$ ($ngeq d+1$). Natural classes of probability distributions are characterized for which, by means of Blaschke-Petkantschin formulae from integral geometry, one can show that the mean facet number of $P_n$ is strictly monotonically increasing in $n$.



قيم البحث

اقرأ أيضاً

This paper presents a new algorithm for the convex hull problem, which is based on a reduction to a combinatorial decision problem POLYTOPE-COMPLETENESS-COMBINATORIAL, which in turn can be solved by a simplicial homology computation. Like other conve x hull algorithms, our algorithm is polynomial (in the size of input plus output) for simplicial or simple input. We show that the ``no-case of POLYTOPE-COMPLETENESS-COMBINATORIAL has a certificate that can be checked in polynomial time (if integrity of the input is guaranteed).
Let $X_1,ldots,X_n$ be i.i.d. random points in the $d$-dimensional Euclidean space sampled according to one of the following probability densities: $$ f_{d,beta} (x) = text{const} cdot (1-|x|^2)^{beta}, quad |x|leq 1, quad text{(the beta case)} $$ an d $$ tilde f_{d,beta} (x) = text{const} cdot (1+|x|^2)^{-beta}, quad xinmathbb{R}^d, quad text{(the beta case).} $$ We compute exactly the expected intrinsic volumes and the expected number of facets of the convex hull of $X_1,ldots,X_n$. Asymptotic formulae where obtained previously by Affentranger [The convex hull of random points with spherically symmetric distributions, 1991]. By studying the limits of the beta case when $betadownarrow -1$, respectively $beta uparrow +infty$, we can also cover the models in which $X_1,ldots,X_n$ are uniformly distributed on the unit sphere or normally distributed, respectively. We obtain similar results for the random polytopes defined as the convex hulls of $pm X_1,ldots,pm X_n$ and $0,X_1,ldots,X_n$. One of the main tools used in the proofs is the Blaschke-Petkantschin formula.
Let $xi_1,xi_2,ldots$ be a sequence of independent copies of a random vector in $mathbb R^d$ having an absolutely continuous distribution. Consider a random walk $S_i:=xi_1+cdots+xi_i$, and let $C_{n,d}:=text{conv}(0,S_1,S_2,ldots,S_n)$ be the convex hull of the first $n+1$ points it has visited. The polytope $C_{n,d}$ is called $k$-neighborly if for every indices $0leq i_0 <cdots < i_kleq n$ the convex hull of the $k+1$ points $S_{i_0},ldots, S_{i_k}$ is a $k$-dimensional face of $C_{n,d}$. We study the probability that $C_{n,d}$ is $k$-neighborly in various high-dimensional asymptotic regimes, i.e. when $n$, $d$, and possibly also $k$ diverge to $infty$. There is an explicit formula for the expected number of $k$-dimensional faces of $C_{n,d}$ which involves Stirling numbers of both kinds. Motivated by this formula, we introduce a distribution, called the Lah distribution, and study its properties. In particular, we provide a combinatorial interpretation of the Lah distribution in terms of random compositions and records, and explicitly compute its factorial moments. Limit theorems which we prove for the Lah distribution imply neighborliness properties of $C_{n,d}$. This yields a new class of random polytopes exhibiting phase transitions parallel to those discovered by Vershik and Sporyshev, Donoho and Tanner for random projections of regular simplices and crosspolytopes.
We study homological properties of random quadratic monomial ideals in a polynomial ring $R = {mathbb K}[x_1, dots x_n]$, utilizing methods from the Erd{o}s-R{e}nyi model of random graphs. Here for a graph $G sim G(n, p)$ we consider the `coedge idea l $I_G$ corresponding to the missing edges of $G$, and study Betti numbers of $R/I_G$ as $n$ tends to infinity. Our main results involve fixing the edge probability $p = p(n)$ so that asymptotically almost surely the Krull dimension of $R/I_G$ is fixed. Under these conditions we establish various properties regarding the Betti table of $R/I_G$, including sharp bounds on regularity and projective dimension, and distribution of nonzero normalized Betti numbers. These results extend work of Erman and Yang, who studied such ideals in the context of conjectured phenomena in the nonvanishing of asymptotic syzygies. Along the way we establish results regarding subcomplexes of random clique complexes as well as notions of higher-dimensional vertex $k$-connectivity that may be of independent interest.
167 - Pierre Calka , J. E. Yukich 2019
We consider the convex hull of the perturbed point process comprised of $n$ i.i.d. points, each distributed as the sum of a uniform point on the unit sphere $S^{d-1}$ and a uniform point in the $d$-dimensional ball centered at the origin and of radiu s $n^{alpha}, alpha in (-infty, infty)$. This model, inspired by the smoothed complexity analysis introduced in computational geometry cite{DGGT,ST}, is a perturbation of the classical random polytope. We show that the perturbed point process, after rescaling, converges in the scaling limit to one of five Poisson point processes according to whether $alpha$ belongs to one of five regimes. The intensity measure of the limit Poisson point process undergoes a transition at the values $alpha = frac{-2} {d -1}$ and $alpha = frac{2} {d + 1}$ and it gives rise to four rescalings for the $k$-face functional on perturbed data. These rescalings are used to establish explicit expectation asymptotics for the number of $k$-dimensional faces of the convex hull of either perturbed binomial or Poisson data. In the case of Poisson input, we establish explicit variance asymptotics and a central limit theorem for the number of $k$-dimensional faces. Finally it is shown that the rescaled boundary of the convex hull of the perturbed point process converges to the boundary of a parabolic hull process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا