ﻻ يوجد ملخص باللغة العربية
Let $xi_1,xi_2,ldots$ be a sequence of independent copies of a random vector in $mathbb R^d$ having an absolutely continuous distribution. Consider a random walk $S_i:=xi_1+cdots+xi_i$, and let $C_{n,d}:=text{conv}(0,S_1,S_2,ldots,S_n)$ be the convex hull of the first $n+1$ points it has visited. The polytope $C_{n,d}$ is called $k$-neighborly if for every indices $0leq i_0 <cdots < i_kleq n$ the convex hull of the $k+1$ points $S_{i_0},ldots, S_{i_k}$ is a $k$-dimensional face of $C_{n,d}$. We study the probability that $C_{n,d}$ is $k$-neighborly in various high-dimensional asymptotic regimes, i.e. when $n$, $d$, and possibly also $k$ diverge to $infty$. There is an explicit formula for the expected number of $k$-dimensional faces of $C_{n,d}$ which involves Stirling numbers of both kinds. Motivated by this formula, we introduce a distribution, called the Lah distribution, and study its properties. In particular, we provide a combinatorial interpretation of the Lah distribution in terms of random compositions and records, and explicitly compute its factorial moments. Limit theorems which we prove for the Lah distribution imply neighborliness properties of $C_{n,d}$. This yields a new class of random polytopes exhibiting phase transitions parallel to those discovered by Vershik and Sporyshev, Donoho and Tanner for random projections of regular simplices and crosspolytopes.
Let $X_1,ldots,X_n$ be independent random points that are distributed according to a probability measure on $mathbb{R}^d$ and let $P_n$ be the random convex hull generated by $X_1,ldots,X_n$ ($ngeq d+1$). Natural classes of probability distributions
We consider the convex hull of the perturbed point process comprised of $n$ i.i.d. points, each distributed as the sum of a uniform point on the unit sphere $S^{d-1}$ and a uniform point in the $d$-dimensional ball centered at the origin and of radiu
We study random walks on the giant component of the ErdH{o}s-Renyi random graph ${cal G}(n,p)$ where $p=lambda/n$ for $lambda>1$ fixed. The mixing time from a worst starting point was shown by Fountoulakis and Reed, and independently by Benjamini, Ko
Consider a system of coalescing random walks where each individual performs random walk over a finite graph G, or (more generally) evolves according to some reversible Markov chain generator Q. Let C be the first time at which all walkers have coales
This paper presents a new algorithm for the convex hull problem, which is based on a reduction to a combinatorial decision problem POLYTOPE-COMPLETENESS-COMBINATORIAL, which in turn can be solved by a simplicial homology computation. Like other conve