ﻻ يوجد ملخص باللغة العربية
This paper investigates the impact of the channel state information (CSI) and antenna correlation at the multi-antenna relay on the performance of wireless powered dual-hop amplify-and-forward relaying systems. Depending on the available CSI at the relay, two different scenarios are considered, namely, instantaneous CSI and statistical CSI where the relay has access only to the antenna correlation matrix. Adopting the power-splitting architecture, we present a detailed performance study for both cases. Closed-form analytical expressions are derived for the outage probability and ergodic capacity. In addition, simple high signal-to-noise ratio (SNR) outage approximations are obtained. Our results show that, antenna correlation itself does not affect the achievable diversity order, the availability of CSI at the relay determines the achievable diversity order. Full diversity order can be achieved with instantaneous CSI, while only a diversity order of one can be achieved with statistical CSI. In addition, the transmit antenna correlation and receive antenna correlation exhibit different impact on the ergodic capacity. Moreover, the impact of antenna correlation on the ergodic capacity also depends heavily on the available CSI and operating SNR.
This paper presents an analytical investigation on the outage performance of dual-hop multiple antenna amplify-and-forward relaying systems in the presence of interference. For both the fixed-gain and variable-gain relaying schemes, exact analytical
In this paper, we consider a three-node cooperative wireless powered communication system consisting of a multi-antenna hybrid access point (H-AP) and a single-antenna relay and a single-antenna user. The energy constrained relay and user first harve
To improve national security, government agencies have long been committed to enforcing powerful surveillance measures on suspicious individuals or communications. In this paper, we consider a wireless legitimate surveillance system, where a full-dup
Radio frequency (RF) wireless energy transfer (WET) is a key technology that may allow seamlessly powering future massive low-energy Internet of Things (IoT) networks. To enable efficient massive WET, channel state information (CSI)-limited/free mult
We consider the opportunistic multiuser diversity in the multiuser two-way amplify-and-forward (AF) relay channel. The relay, equipped with multiple antennas and a simple zero-forcing beam-forming scheme, selects a set of two way relaying user pairs