ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of the phase change from pyrochlore to perovskite-like layered structure and a new lead free ferroelectric

90   0   0.0 ( 0 )
 نشر من قبل Zhipeng Gao
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Materials with formula of A2B2O7 is a famous family with more than 300 compounds, and have abundant properties, like ferroelectric, multiferroic, and photocatalyst properties, etc. Generally, two structures dominate this family, which are pyrochlore and perovskite-like layered (PL) structure. Previously, the structure and properties design of these materials are usually complex, and solid solutions, which complicates the manufacture, as well as introducing complexity in the study of the microscopic origins of the properties. Here, we report that the pyrochlore-PL structure change happened in pure Eu2Ti2O7 under high pressure and temperature, and the formed PL structure will transfer back by heating. These results reveal that the PL structure formed in PL-pyrochlore solid solutions, is due to tuning of the high-pressure formed PL structure in pure pyrochlore compounds to ambient pressure. These results indicate the high pressure and high temperature can be used to manipulate the crystal structures from pyrochlore to PL structure, or vice versa. Furthermore, the PL Eu2Ti2O7 was confirmed as a lead free ferroelectric material for the first time.

قيم البحث

اقرأ أيضاً

129 - C.-J. Cheng , S.H. Lim , S. Fujino 2008
We investigate the microstructural evolution in a ferroelectric to antiferroelectric phase transition at the morphotropic phase boundary in the Bi(1-x)SmxFeO3 system. Continuous Sm3+ substitution on the A-site induces short-range anti-parallel cation displacements as verified by the appearance of localized 1/4(110) weak spots in selected area electron diffraction patterns for 0.1<x<0.14 samples, and thus onset of antiferroelectricity. Kinetic Monte Carlo simulations confirm that increasing the strength of the anti-parallel interactions (i.e. increasing x) induces a ferroelectric to antiferroelectric transition. For 0.14<x<0.2 antiphase oxygen octahedra tilts induce complete antiferroelectricity.
We report on the discovery of a lead-free morphotropic phase boundary in Sm doped BiFeO3 with a simple perovskite structure using the combinatorial thin film strategy. The boundary is a rhombohedral to pseudo-orthorhombic structural transition which exhibits a ferroelectric (FE) to antiferroelectric (AFE) transition at approximately Bi0.86Sm0.14FeO3 with dielectric constant and out-of-plane piezoelectric coefficient comparable to those of epitaxial (001) oriented Pb(Zr,Ti)O3 (PZT) thin films at the MPB. The discovered composition may be a strong candidate of a Pb-free piezoelectric replacement of PZT.
We review all the published literature and show that there is no experimental evidence for homogeneous tin titanate SnTiO3 in bulk or thin-film form. Instead a combination of unrelated artefacts are easily misinterpreted. The X-ray Bragg data are con taminated by double scattering from the Si substrate, giving a strong line at the 2-theta angle exactly where perovskite SnTiO3 should appear. The strong dielectric divergence near 560K is irreversible and arises from oxygen site detrapping, accompanied by Warburg/Randles interfacial anomalies. The small (4 uC/cm2) apparent ferroelectric hysteresis remains in samples shown in pure (Sn,Ti)O2 rutile/cassiterite, in which ferroelectricity is forbidden. Only very recent German work reveals real bulk SnTiO3, but this is completely inhomogeneous, consisting of an elaborate array of stacking faults, not suitable for ferroelectric devices. Unpublished TEM data reveal an inhomogeneous SnO layered structured thin films, related to shell-core structures. The harsh conclusion is that there is a combination of unrelated artefacts masquerading as ferroelectricity in powders and ALD films; and only a trace of a second phase in Cambridge PLD data suggests any perovskite content at all. The fact that X-ray, dielectric, and hysteresis data all lead to the wrong conclusion is instructive and reminds us of earlier work on copper calcium titanate (a well-known boundary-layer capacitor).
A$_2$BB$^prime$X$_6$ halide double perovskites based on bismuth and silver have recently been proposed as potential environmentally-friendly alternatives to lead-based hybrid halide perovskites. In particular, Cs$_2$BiAgX$_6$ (X = Cl, Br) have been s ynthesized and found to exhibit band gaps in the visible range. However, the band gaps of these compounds are indirect, which is not ideal for applications in thin film photovoltaics. Here, we propose a new class of halide double perovskites, where the B$^{3+}$ and B$^{+}$ cations are In$^{3+}$ and Ag$^{+}$, respectively. Our first-principles calculations indicate that the hypothetical compounds Cs$_2$InAgX$_6$ (X = Cl, Br, I) should exhibit direct band gaps between the visible (I) and the ultraviolet (Cl). Based on these predictions, we attempt to synthesize Cs$_2$InAgCl$_6$ and Cs$_2$InAgBr$_6$, and we succeed to form the hitherto unknown double perovskite Cs$_2$InAgCl$_6$. X-ray diffraction yields a double perovskite structure with space group $Fmoverline{3}m$. The measured band gap is 3.3 eV, and the compound is found to be photosensitive and turns reversibly from white to orange under ultraviolet illumination. We also perform an empirical analysis of the stability of Cs$_2$InAgX$_6$ and their mixed halides based on Goldschmidts rules, and we find that it should also be possible to form Cs$_2$InAg(Cl$_{1-x}$Br$_{x}$)$_6$ for $x<1$. The synthesis of mixed halides will open the way to the development of lead-free double perovskites with direct and tunable band gaps.
We have synthesised ceramic specimens of the tetragonal tungsten bronze K3Li2Ta5O15 (KLT) and characterized its phase transition via X-ray, dielectric permittivity, ultrasonic spectroscopy and heat capacity measurements. The space group of KLT is rep orted as both P4/mbm or Cmmm with the orthorhombic distortion occurring when there are higher partial pressures of volatile K and Li used within the closed crucibles for the solid state synthesis. The data show strong relaxor behaviour, with the temperature at which the two dielectric relative permittivity peaks decreasing with 104 K $geqslant$ Tm1 $geqslant$ 69 K and 69 K $geqslant$ Tm2 $geqslant$ 46 K as probe frequency f is reduced from 1 MHz to 316 Hz. The data satisfy a Vogel-Fulcher model with an extrapolated freezing temperature for {epsilon} and {epsilon} of Tf1 = + 15.8 and - 11.8 K and Tf2 = - 5.0 and - 15.0 K for f $rightarrow$ 0 (tending to dc). Therefore by tuning frequency, the transition could be shifted to absolute zero suggesting KLT has a relaxor-type quantum critical point. In addition, we have reanalysed the conflicting literature for Pb2Nb2O7 pyrochlore which suggests that this is also a relaxor-type quantum critical point as the freezing temperature from Vogel-Fulcher fitting is below absolute zero. Since the transition temperature evidenced in the dielectric data at ca. 100 kHz shifts below zero Kelvin for very low frequencies, heat capacity data collected in the zero-frequency (dc) limit, should not indicate a transition. Both of these materials show promise as possible new relaxor-type quantum critical points within non-perovskite based structures as multiple compounds are reported with low-temperature transitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا