ﻻ يوجد ملخص باللغة العربية
We in this paper derive the analytical expressions of ground-state energy, average photon-number, and the atomic population by means of the spin-coherent-state variational method for arbitrary number of atoms in an optomechanical cavity. It is found that the existence of mechanical oscil- lator does not affect the phase boundary between the normal and superradiant phases. However, the superradiant phase collapses by the resonant damping of the oscillator when the atom-field coupling increases to a so-called turning point. As a consequence the system undergoes at this point an additional phase transition from the superradiant phase to a new normal phase of the atomic population-inversion state. The region of superradiant phase decreases with the increase of photon-phonon coupling. It shrinks to zero at a critical value of the coupling and a direct atomic population transfer appears between two atom-levels. Moreover we find an unstable nonzero-photon state, which is the counterpart of the superradiant state. In the absence of oscillator our result re- duces exactly to that of Dicke model. Particularly the ground-state energy for N = 1 (i.e. the Rabi model) is in perfect agreement with the numerical diagonalization in a wide region of coupling constant for both red and blue detuning. The Dicke phase transition remains for the Rabi model in agreement with the recent observation.
The controllability of current quantum technologies allows to implement spin-boson models where two-photon couplings are the dominating terms of light-matter interaction. In this case, when the coupling strength becomes comparable with the characteri
Carbon nanotubes tend to collapse when their diameters exceed a certain threshold, or when a sufficiently large external pressure is applied on their walls. Their radial stability of tubes has been studied in each of these cases, however a general th
Although the oscillator strength sum rule forbids the phase transition in ideal non-interacting two-level atoms systems, we present the possibility of the quantum phase transition in the coupled two-level atoms in a cavity. The system undergoes the s
Two-level atoms interacting with a one mode cavity field at zero temperature have order parameters which reflect the presence of a quantum phase transition at a critical value of the atom-cavity coupling strength. Two popular examples are the number
We investigate quantum phase transitions, quantum criticality, and Berry phase for the ground state of an ensemble of non-interacting two-level atoms embedded in a non-linear optical medium, coupled to a single-mode quantized electromagnetic field. T