ﻻ يوجد ملخص باللغة العربية
We present a chemical abundance analysis of a metal-poor star, ROA 276, in the stellar system omega Centauri. We confirm that this star has an unusually high [Sr/Ba] abundance ratio. Additionally, ROA 276 exhibits remarkably high abundance ratios, [X/Fe], for all elements from Cu to Mo along with normal abundance ratios for the elements from Ba to Pb. The chemical abundance pattern of ROA 276, relative to a primordial omega Cen star ROA 46, is best fit by a fast-rotating low-metallicity massive stellar model of 20 Msun, [Fe/H] = -1.8, and an initial rotation 0.4 times the critical value; no other nucleosynthetic source can match the neutron-capture element distribution. ROA 276 arguably offers the most definitive proof to date that fast-rotating massive stars contributed to the production of heavy elements in the early Universe.
We present a detailed spectroscopic analysis of RR Lyrae (RRL) variables in the globular cluster NGC 5139 (omega Cen). We collected optical (4580-5330 A), high resolution (R = 34,000), high signal-to-noise ratio (200) spectra for 113 RRLs with the mu
By using high-resolution spectra acquired with FLAMES-GIRAFFE at the ESO/VLT, we measured radial and rotational velocities for 110 Blue Straggler stars (BSSs) in Omega Centauri, the globular cluster-like stellar system harboring the largest known BSS
Context. Rotation is known to affect the nucleosynthesis of light elements in massive stars, mainly by rotation-induced mixing. In particular, rotation boosts the primary nitrogen production. Models of rotating stars are able to reproduce the nitroge
The most massive and complex globular clusters in the Galaxy are thought to have originated as the nuclear cores of now tidally disrupted dwarf galaxies, but the connection between globular clusters and dwarf galaxies is tenuous with the M54/Sagittar
We present Li, Na, Al and Fe abundances of 199 lower red giant branch stars members of the stellar system Omega Centauri, using high-resolution spectra acquired with FLAMES at the Very Large Telescope. The A(Li) distribution is peaked at A(Li) ~ 1 de