ترغب بنشر مسار تعليمي؟ اضغط هنا

Spinning like a Blue Straggler: the population of fast rotating Blue Straggler stars in Omega Centauri

202   0   0.0 ( 0 )
 نشر من قبل Alessio Mucciarelli
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By using high-resolution spectra acquired with FLAMES-GIRAFFE at the ESO/VLT, we measured radial and rotational velocities for 110 Blue Straggler stars (BSSs) in Omega Centauri, the globular cluster-like stellar system harboring the largest known BSS population. According to their radial velocities, 109 BSSs are members of the system. The rotational velocity distribution is very broad, with the bulk of BSSs spinning at less than ~40 km/s (in agreement with the majority of such stars observed in other globular clusters) and a long tail reaching ~200 km/s. About 40% of the sample has vsini >40 km/s and about 20% has vsini >70 km/s. Such a large fraction is very similar to the percentage of of fast rotating BSSs observed in M4. Thus, Omega Centauri is the second stellar cluster, beyond M4, with a surprisingly high population of fast spinning BSSs. We found a hint of a radial behaviour of the fraction of fast rotating BSSs, with a mild peak within one core radius, and a possibile rise in the external regions (beyond four core radii). This may suggest that recent formation episodes of mass transfer BSSs occurred preferentially in the outskirts of Omega Centauri, or that braking mechanisms able to slow down these stars are least efficient in lowest density environments.



قيم البحث

اقرأ أيضاً

458 - M. Mapelli 2007
Blue straggler star (BSS) candidates have been observed in all old dwarf spheroidal galaxies (dSphs), however whether or not they are authentic BSSs or young stars has been a point of debate. To both address this issue and obtain a better understandi ng of the formation of BSSs in different environments we have analysed a sample of BSS candidates in two nearby Galactic dSphs, Draco and Ursa Minor. We have determined their radial and luminosity distributions from wide field multicolour imaging data extending beyond the tidal radii of both galaxies. BSS candidates are uniformly distributed through the host galaxy, whereas a young population is expected to show a more clumpy distribution. Furthermore, the observed radial distribution of BSSs, normalized to both red giant branch (RGB) and horizontal branch (HB) stars, is almost flat, with a slight decrease towards the centre. Such a distribution is at odds with the predictions for a young stellar population, which should be more concentrated. Instead, it is consistent with model predictions for BSS formation by mass transfer in binaries (MT-BSSs). Such results, although not decisive, suggest that these candidates are indeed BSSs and that MT-BSSs form in the same way in Draco and Ursa Minor as in globular clusters. This favours the conclusion that Draco and Ursa Minor are truly fossil galaxies, where star formation ceased completely more than 8 billion years ago.
Blue straggler stars are exotic objects present in all stellar environments whose nature and formation channels are still partially unclear. They seem to be particularly abundant in open clusters (OCs), thus offering a unique chance to tackle these p roblems statistically.We aim to build up a new and homogeneous catalogue of blue straggler stars (BSS) in Galactic OCs using Gaia to provide a more solid assessment of the membership of these stars. We also aim to explore possible relationships of the straggler abundance with the parent clusters structural and dynamical parameters. As a by-product, we also search for possible yellow straggler stars (YSS), which are believed to be stragglers in a more advanced evolution stage. We employed photometry, proper motions, and parallaxes extracted from Gaia DR2 for 408 Galactic star clusters and searched for stragglers within them after performing a careful membership analysis. The number of BBS emerging from our more stringent, selection criteria turns out to be significantly smaller than in previo
By combining high-resolution HST and wide-field ground based observations, in ultraviolet and optical bands, we study the Blue Stragglers Star (BSS) population of the galactic globular cluster M5 (NGC 5904) from its very central regions up to its per iphery. The BSS distribution is highly peaked in the cluster center, decreases at intermediate radii and rises again outward. Such a bimodal distribution is similar to those previously observed in other globular clusters (M3, 47Tucanae, NGC6752). As for these clusters, dynamical simulations suggest that, while the majority of BSS in M5 could be originated by stellar collisions, a significant fraction (20-40%) of BSS generated by mass transfer processes in primordial binaries is required to reproduce the observed radial distribution. A candidate BSS has been detected beyond the cluster tidal radius. If confirmed, this could represent an interesting case of an evaporating BSS.
Blue Stragglers are stars located in an unexpected region of the color-magnitude diagram of a stellar population, as they appear bluer and more luminous than the stars in the turnoff region. They are ubiquitous, since they have been found among Milky Way field stars, in open and globular clusters, and also in other galaxies of the Local Group. Here we present a study on the blue straggler population of the old and metal-rich open cluster Collinder 261, based on Gaia DR2 data and on a multi-epoch radial velocity survey conducted with FLAMES@VLT. We also analyze the radial distribution of the blue straggler population to probe the dynamical status of the cluster. Blue straggler candidates were identified first with Gaia DR2, according to their position on the CMD, proper motions, and parallaxes. Their radial distribution was compared with those of the main sequence, red giant, and red clump stars, to evaluate mass segregation. Additionally, their radial velocities (and the associated uncertainties) were compared with the mean radial velocity and the velocity dispersion of the cluster. When possible, close binaries and long-period binaries were also identified, based on the radial velocity variations for the different epochs. We also looked for yellow stragglers, i.e., possible evolved blue stragglers. We found 53 blue stragglers members of Collinder 261, six of them already identified in previous catalogs. Among the blue straggler candidates with radial velocity measurements, we found one long-period binary, five close-binary systems, three non-variable stars; we also identified one yellow straggler.
Blue Straggler Stars (BSSs) are observed in Galactic globular clusters and old open clusters. The radial distribution of BSSs has been used to diagnose the dynamical evolution of globular clusters. For the first time, with a reliable sample of BSSs i dentified with Gaia DR2, we conduct such an analysis for an open cluster. We identify members, including BSSs, of the oldest known Galactic open cluster Berkeley 17 with the Gaia DR2 proper motions and parallaxes. We study the radial distribution of the BSS population to understand the dynamical evolution of the cluster. We select cluster members to populate the colour magnitude diagram in the Gaia filters. Cluster parameters are derived using the brightest members. The BSSs and giant branch stars are identified, and their radial distributions are compared. The segregation of BSSs is also evaluated with respect to the giant branch stars using the Minimum Spanning Tree analysis. We determine Berkeley 17 to be at $3138.6^{+285.5}_{-352.9}$ pc. We find 23 BSS cluster members, only two of which were previously identified. We find a bimodal radial distribution of BSSs supported by findings from the MST method. The bimodal radial distribution of BSSs in Berkeley 17 indicates that they have just started to sink towards the cluster center, placing Berkeley 17 with globular clusters of intermediate dynamical age. This is the first such determination for an open cluster.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا