ﻻ يوجد ملخص باللغة العربية
We propose novel first-order stochastic approximation algorithms for canonical correlation analysis (CCA). Algorithms presented are instances of inexact matrix stochastic gradient (MSG) and inexact matrix exponentiated gradient (MEG), and achieve $epsilon$-suboptimality in the population objective in $operatorname{poly}(frac{1}{epsilon})$ iterations. We also consider practical variants of the proposed algorithms and compare them with other methods for CCA both theoretically and empirically.
We present an efficient stochastic algorithm (RSG+) for canonical correlation analysis (CCA) using a reparametrization of the projection matrices. We show how this reparametrization (into structured matrices), simple in hindsight, directly presents a
Canonical Correlation Analysis (CCA) is a statistical technique used to extract common information from multiple data sources or views. It has been used in various representation learning problems, such as dimensionality reduction, word embedding, an
We present Deep Generalized Canonical Correlation Analysis (DGCCA) -- a method for learning nonlinear transformations of arbitrarily many views of data, such that the resulting transformations are maximally informative of each other. While methods fo
Canonical correlation analysis (CCA) is a classical and important multivariate technique for exploring the relationship between two sets of continuous variables. CCA has applications in many fields, such as genomics and neuroimaging. It can extract m
In this paper, we propose the Discriminative Multiple Canonical Correlation Analysis (DMCCA) for multimodal information analysis and fusion. DMCCA is capable of extracting more discriminative characteristics from multimodal information representation