ترغب بنشر مسار تعليمي؟ اضغط هنا

High-performance versatile setup for simultaneous Brillouin-Raman micro-spectroscopy

206   0   0.0 ( 0 )
 نشر من قبل Silvia Corezzi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Scarponi




اسأل ChatGPT حول البحث

Brillouin and Raman scattering spectroscopy are established techniques for the nondestructive contactless and label-free readout of mechanical, chemical and structural properties of condensed matter. Brillouin-Raman investigations currently require separate measurements and a site-matching approach to obtain complementary information from a sample. Here we demonstrate a new concept of fully scanning multimodal micro-spectroscopy for simultaneous detection of Brillouin and Raman light scattering in an exceptionally wide spectral range, from fractions of GHz to hundreds of THz. It yields an unprecedented 150 dB contrast, which is especially important for the analysis of opaque or turbid media such as biomedical samples, and a spatial resolution on sub-cellular scale. We report the first applications of this new multimodal method to a range of systems, from a single cell to the fast reaction kinetics of a curing process, and the mechano-chemical mapping of highly scattering biological samples.



قيم البحث

اقرأ أيضاً

Gas detectors are one of the pillars of the research in fundamental physics. Since many years, a new concept of detectors, the Micro Pattern Gas Detectors, allows to overcome many of the problems of other types of commonly used detectors, as drift ch ambers and microstrips, reducing the discharge rate and increasing the radiation tolerance. Among these, one of the most commonly used is the Gas Electron Multiplier. Commonly deployed as fast timing detectors and triggers, due to their fast response, high rate capability and high radiation hardness, they can also be used as trackers. The center of gravity readout technique allows to overcome the limit of the digital pads, whose spatial resolution is constrained by the pitch size. The presence of a high external magnetic field can distort the electronic cloud and affect the spatial resolution. The micro-TPC reconstruction method allows to reconstruct the three dimensional particle position as in a traditional Time Projection Chamber, but within a drift gap of a few millimeters. This method brings these detectors into a new perspective for what concerns the spatial resolution in strong magnetic field. In this report, the basis of this new technique will be shown and it will be compared to the traditional center of gravity. The results of a series of test beam performed with 10 x 10 cm2 planar prototypes in magnetic field will also be presented. This is one of the first implementations of this technique for GEM detectors in magnetic field and allows to reach unprecedented performance for gas detectors, up to a limit of 120 micron at 1T, one of the worlds best results for MPGDs in strong magnetic field. The micro-TPC reconstruction has been recently tested at very high rates in a test beam at the MAMI facility; preliminary results of the test will be presented.
Time- and angle-resolved photoelectron spectroscopy (trARPES) is a powerful method to track the ultrafast dynamics of quasiparticles and electronic bands in energy and momentum space. We present a setup for trARPES with 22.3 eV extreme-ultraviolet (X UV) femtosecond pulses at 50-kHz repetition rate, which enables fast data acquisition and access to dynamics across momentum space with high sensitivity. The design and operation of the XUV beamline, pump-probe setup, and UHV endstation are described in detail. By characterizing the effect of space-charge broadening, we determine an ultimate source-limited energy resolution of 60 meV, with typically 80-100 meV obtained at 1-2e10 photons/s probe flux on the sample. The instrument capabilities are demonstrated via both equilibrium and time-resolved ARPES studies of transition-metal dichalcogenides. The 50-kHz repetition rate enables sensitive measurements of quasiparticles at low excitation fluences in semiconducting MoSe$_2$, with an instrumental time resolution of 65 fs. Moreover, photo-induced phase transitions can be driven with the available pump fluence, as shown by charge density wave melting in 1T-TiSe$_2$. The high repetition-rate setup thus provides a versatile platform for sensitive XUV trARPES, from quenching of electronic phases down to the perturbative limit.
Brillouin light scattering spectroscopy is a powerful technique for the study of fast magnetization dynamics with both frequency- and wavevector resolution. Here, we report on a distinct improvement of this spectroscopic technique towards two-dimensi onal wide-range wavevector selectivity in a backward scattering geometry. Spin-wave wavevectors oriented perpendicular to the bias magnetic field are investigated by tilting the sample within the magnet gap. Wavevectors which are oriented parallel to the applied magnetic field are analyzed by turning the entire setup, including the magnet system. The setup features a wide selectivity of wavevectors up to 2.04cdot 10E5 rad/cm for both orientations, and allows selecting and measuring wavevectors of dipole- and exchange-dominated spin waves of any orientation to the magnetization simultaneously.
We report on the performance of a micro-TPC with a micro pixel chamber($mu$-PIC) readout for a time-resolved neutron position-sensitive detector(PSD). Three-dimensional tracks and the Bragg curves of protons with energies of around 1 MeV were clearly detected by the micro-TPC. More than 95% of gamma-rays of 511 keV were found to be discriminated by simple analysis. Simulation studies showed that the total track length of proton and triton emitted from the $rm {}^{3}He$(n,p(573 keV))$rm {}^{3}H(191 keV)$ reaction is about 1.2 cm, and that both particles have large energy losses ($rm > 200 keV/cm$) in 1 atm Ar+$rm C_{2}H_{6}(10%)$+${}^{3}$He($< 1%$). These values suit the current performance of the micro-TPC, and we conclude that a time-resolved neutron PSD with spatial resolution of sub-millimeters shall be developed as an application of the micro-TPC.
We present an experimental setup for laser-based angle-resolved time-of-flight (LARTOF) photoemission. Using a picosecond pulsed laser, photons of energy 10.5 eV are generated through higher harmonic generation in xenon. The high repetition rate of t he light source, variable between 0.2-8 MHz, enables high photoelectron count rates and short acquisition times. By using a Time-of-Flight (ToF) analyzer with angle-resolving capabilities electrons emitted from the sample within a circular cone of up to pm15 degrees can be collected. Hence, simultaneous acquisition of photoemission data for a complete area of the Brillouin zone is possible. The current photon energy enables bulk sensitive measurements, high angular resolution and the resulting covered momentum space is large enough to enclose the entire Brillouin zone in cuprate high-Tc superconductors. Fermi edge measurements on polycrystalline Au shows an energy resolution better than 5 meV. Data from a test measurement of the Au(111) surface state is presented along with measurements of the Fermi surface of the high-Tc superconductor Bi2212.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا