ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance of the micro-TPC Reconstruction for GEM Detectors at High Rate

467   0   0.0 ( 0 )
 نشر من قبل Lia Lavezzi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gas detectors are one of the pillars of the research in fundamental physics. Since many years, a new concept of detectors, the Micro Pattern Gas Detectors, allows to overcome many of the problems of other types of commonly used detectors, as drift chambers and microstrips, reducing the discharge rate and increasing the radiation tolerance. Among these, one of the most commonly used is the Gas Electron Multiplier. Commonly deployed as fast timing detectors and triggers, due to their fast response, high rate capability and high radiation hardness, they can also be used as trackers. The center of gravity readout technique allows to overcome the limit of the digital pads, whose spatial resolution is constrained by the pitch size. The presence of a high external magnetic field can distort the electronic cloud and affect the spatial resolution. The micro-TPC reconstruction method allows to reconstruct the three dimensional particle position as in a traditional Time Projection Chamber, but within a drift gap of a few millimeters. This method brings these detectors into a new perspective for what concerns the spatial resolution in strong magnetic field. In this report, the basis of this new technique will be shown and it will be compared to the traditional center of gravity. The results of a series of test beam performed with 10 x 10 cm2 planar prototypes in magnetic field will also be presented. This is one of the first implementations of this technique for GEM detectors in magnetic field and allows to reach unprecedented performance for gas detectors, up to a limit of 120 micron at 1T, one of the worlds best results for MPGDs in strong magnetic field. The micro-TPC reconstruction has been recently tested at very high rates in a test beam at the MAMI facility; preliminary results of the test will be presented.



قيم البحث

اقرأ أيضاً

Gaseous detectors are used in high energy physics as trackers or, more generally, as devices for the measurement of the particle position. For this reason, they must provide high spatial resolution and they have to be able to operate in regions of in tense radiation, i.e. around the interaction point of collider machines. Among these, Micro Pattern Gaseous Detectors (MPGD) are the latest frontier and allow to overcome many limitations of the pre-existing detectors, such as the radiation tolerance and the rate capability. The gas Electron Multiplier (GEM) is a MPGD that exploits an intense electric field in a reduced amplification region in order to prevent discharges. Several amplification stages, like in a triple-GEM, allow to increase the detector gain and to reduce the discharge probability. Reconstruction techniques such as charge centroid (CC) and micro-Time Projection Chamber ($upmu$TPC) are used to perform the position measurement. From literature triple-GEMs show a stable behaviour up to $10^8,$Hz/cm$^2$. A testbeam with four planar triple-GEMs has been performed at the Mainz Microtron (MAMI) facility and their performance was evaluated in different beam conditions. In this article a focus on the time performance for the $upmu$TPC clusterization is given and a new measurement of the triple-GEM limits at high rate will be presented.
In CBM Experiment at FAIR, dimuons will be detected by a Muon Chamber (MUCH) consisting of segmented absorbers of varying widths and tracking chambers sandwiched between the absorber-pairs. In this fixed target heavy-ion collision experiment, operati ng at highest interaction rate of $10~MHz$ for $Au+Au$ collision, after the first MUCH detector station in its inner radial ring will face a particle rate of $1~MHz/cm^2$. To operate at such a high particle density, GEM technology based detectors have been selected for the first two stations of MUCH. We have reported earlier the performance of several small-size GEM detector prototypes built at VECC for use in MUCH. In this work, we report on a large GEM chamber prototype tested with proton beam of momentum $2.36~GeV/c$ at COSY-J{u}elich Germany. The detector was read out using nXYTER ASIC operated in self-triggering mode. An efficiency higher than $96%$ at $Delta V_{GEM}~=~375.2~V$ was achieved. The variation of efficiency with the rate of incoming protons has been found to vary within $2%$ when tested up to a maximum rate of $2.8~MHz/cm^2$. The gain was found to be stable at high particle rate with a maximum variation of $sim~9%$.
For the International Large Detector (ILD) at the planned International Linear Collider (ILC) a Time Projection Chamber (TPC) is foreseen as the main tracking detector. To achieve the required point resolution, Micro-Pattern Gaseous Detectors (MPGD) will be used in the amplification stage. A readout module using a stack of three Gas Electron Multipliers (GEM) for gas amplification was developed at DESY and tested at the DESY II Test Beam Facility. After introducing the readout module and the infrastructure at the test beam facility, the performance related to single point and double-hit resolution of three of these modules is presented. This is followed by results on the particle identification capabilities of the system, using the specific energy loss dE/dx, and simulation studies, aimed to investigate and quantify the impact of high granularity on dE/dx resolution. In addition, a new and improved TPC field cage and the LYCORIS Large-Area Silicon-Strip Telescope for the test beam are described. The LYCORIS beam telescope is foreseen to provide a precise reference of the particle trajectory to validate the momentum resolution measured with a large TPC prototype. For this purpose, it is being installed and tested at the test beam facility within the so-called PCMAG (Persistent Current Magnet).
We report on the performance of a micro-TPC with a micro pixel chamber($mu$-PIC) readout for a time-resolved neutron position-sensitive detector(PSD). Three-dimensional tracks and the Bragg curves of protons with energies of around 1 MeV were clearly detected by the micro-TPC. More than 95% of gamma-rays of 511 keV were found to be discriminated by simple analysis. Simulation studies showed that the total track length of proton and triton emitted from the $rm {}^{3}He$(n,p(573 keV))$rm {}^{3}H(191 keV)$ reaction is about 1.2 cm, and that both particles have large energy losses ($rm > 200 keV/cm$) in 1 atm Ar+$rm C_{2}H_{6}(10%)$+${}^{3}$He($< 1%$). These values suit the current performance of the micro-TPC, and we conclude that a time-resolved neutron PSD with spatial resolution of sub-millimeters shall be developed as an application of the micro-TPC.
Optical readout of large Time Projection Chambers (TPCs) with multiple Gas Electron Multipliers (GEMs) amplification stages has shown to provide very interesting performances for high energy particle tracking. Proposed applications for low-energy and rare event studies, such as Dark Matter search, ask for demanding performance in the keV energy range. The performance of such a readout was studied in details as a function of the electric field configuration and GEM gain by using a $^{55}$Fe source within a 7 litre sensitive volume detector developed as a part of the R&D for the CYGNUS project. Results reported in this paper show that the low noise level of the sensor allows to operate with a 2~keV threshold while keeping a rate of fake-events lesser than 10 per year. In this configuration, a detection efficiency well above 95% along with an energy resolution ($sigma$) of 18% is obtained for the 5.9 keV photons, demonstrating the very promising capabilities of this technique.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا