ﻻ يوجد ملخص باللغة العربية
We explore the correlations between velocity and metallicity and the possible distinct chemical signatures of the velocity over-densities of the local Galactic neighbourhood. We use the large spectroscopic survey RAVE and the Geneva Copenhagen Survey. We compare the metallicity distribution of regions in the velocity plane ($v_R,v_phi$) with that of their symmetric counterparts ($-v_R,v_phi$). We expect similar metallicity distributions if there are no tracers of a sub-population (e.g., a dispersed cluster, accreted stars), if the disk of the Galaxy is axisymmetric, and if the orbital effects of the spiral arms and the bar are weak. We find that the metallicity-velocity space of the solar neighbourhood is highly patterned. A large fraction of the velocity plane shows differences in the metallicity distribution when comparing symmetric $v_R$ regions. The typical differences in the median metallicity are of $0.05$ dex with a statistical significance of at least $95%$, and with values up to $0.6$ dex. For low azimuthal velocity $v_phi$, stars moving outwards in the Galaxy have on average higher metallicity than those moving inwards. These include stars in the Hercules and Hyades moving groups and other velocity branch-like structures. For higher $v_phi$, the stars moving inwards have higher metallicity than those moving outwards. The most likely interpretation of the metallicity asymmetry is that it is due to the orbital effects of the bar and the radial metallicity gradient of the disk. We present a simulation that supports this idea. We have also discovered a positive gradient in $v_phi$ with respect to metallicity at high metallicities, apart from the two known positive and negative gradients for the thick and thin disks, respectively.
We investigate the vertical metallicity gradients of five mono-age stellar populations between 0 and 11 Gyr for a sample of 18 435 dwarf stars selected from the cross-matched Tycho-Gaia Astrometric Solution (TGAS) and RAdial Velocity Experiment (RAVE
Before the publication of the Gaia DR2 we confirmed with RAVE and TGAS an observation recently made with the GALAH survey by Quillen ey al. concerning the Coma Berenices moving group in the Solar neighbourhood, namely that it is only present at negat
Using GALAH survey data of nearby stars, we look at how structure in the planar (u,v) velocity distribution depends on metallicity and on viewing direction within the Galaxy. In nearby stars, with distance d < 1 kpc, the Hercules stream is most stron
We present the third data release of the RAdial Velocity Experiment (RAVE) which is the first milestone of the RAVE project, releasing the full pilot survey. The catalog contains 83,072 radial velocity measurements for 77,461 stars in the southern ce
We present the stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity), radial velocities, individual abundances and distances determined for 425 561 stars, which constitute the fourth public data release of the R