ترغب بنشر مسار تعليمي؟ اضغط هنا

Coma Berenices: first evidence for incomplete vertical phase-mixing in local velocity space with RAVE - confirmed with Gaia DR2

57   0   0.0 ( 0 )
 نشر من قبل Giacomo Monari
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Before the publication of the Gaia DR2 we confirmed with RAVE and TGAS an observation recently made with the GALAH survey by Quillen ey al. concerning the Coma Berenices moving group in the Solar neighbourhood, namely that it is only present at negative Galactic latitudes. This allowed us to show that it is coherent in vertical velocity, providing a first evidence for incomplete vertical phase-mixing. We estimated for the first time from dynamical arguments that the moving group must have formed at most ~ 1.5 Gyr ago, and related this to a pericentric passage of the Sagittarius dwarf satellite galaxy. The present note is a rewritten version of the original arXiv post on this result now also including a confirmation of our finding with Gaia DR2.


قيم البحث

اقرأ أيضاً

We develop a novel method to simultaneously determine the vertical potential, force and stellar $z-v_z$ phase space distribution function (DF) in our local patch of the Galaxy. We assume that the Solar Neighborhood can be treated as a one-dimensional system in dynamical equilibrium and directly fit the number density in the $z-v_z$ plane to what we call the Rational Linear DF (RLDF) model. This model can be regarded as a continuous sum of isothermal DFs though it has only one more parameter than the isothermal model. We apply our method to a sample of giant stars from Gaia Data Release 2 and show that the RLDF provides an excellent fit to the data. The well-known phase space spiral emerges in the residual map of the $z-v_z$ plane. We use the best-fit potential to plot the residuals in terms of the frequency and angle of vertical oscillations and show that the spiral maps into a straight line. From its slope, we estimate that the phase spirals were generated by a perturbation $sim540$ Myr years ago. We also determine the differential surface density as a function of vertical velocity dispersion, a.k.a. the vertical temperature distribution. The result is qualitatively similar to what was previously found for SDSS/SEGUE G dwarfs. Finally, we address parameter degeneracies and the validity of the 1D approximation. Particularly, the mid-plane density derived from a cold subsample, where the 1D approximation is more secure, is closer to literature values than that derived from the sample as a whole.
We explore the correlations between velocity and metallicity and the possible distinct chemical signatures of the velocity over-densities of the local Galactic neighbourhood. We use the large spectroscopic survey RAVE and the Geneva Copenhagen Survey . We compare the metallicity distribution of regions in the velocity plane ($v_R,v_phi$) with that of their symmetric counterparts ($-v_R,v_phi$). We expect similar metallicity distributions if there are no tracers of a sub-population (e.g., a dispersed cluster, accreted stars), if the disk of the Galaxy is axisymmetric, and if the orbital effects of the spiral arms and the bar are weak. We find that the metallicity-velocity space of the solar neighbourhood is highly patterned. A large fraction of the velocity plane shows differences in the metallicity distribution when comparing symmetric $v_R$ regions. The typical differences in the median metallicity are of $0.05$ dex with a statistical significance of at least $95%$, and with values up to $0.6$ dex. For low azimuthal velocity $v_phi$, stars moving outwards in the Galaxy have on average higher metallicity than those moving inwards. These include stars in the Hercules and Hyades moving groups and other velocity branch-like structures. For higher $v_phi$, the stars moving inwards have higher metallicity than those moving outwards. The most likely interpretation of the metallicity asymmetry is that it is due to the orbital effects of the bar and the radial metallicity gradient of the disk. We present a simulation that supports this idea. We have also discovered a positive gradient in $v_phi$ with respect to metallicity at high metallicities, apart from the two known positive and negative gradients for the thick and thin disks, respectively.
87 - Lina Necib , Tongyan Lin 2021
Measuring the escape velocity of the Milky Way is critical in obtaining the mass of the Milky Way, understanding the dark matter velocity distribution, and building the dark matter density profile. In Necib $&$ Lin (2021), we introduced a strategy to robustly measure the escape velocity. Our approach takes into account the presence of kinematic substructures by modeling the tail of the stellar distribution with multiple components, including the stellar halo and the debris flow called the Gaia Sausage (Enceladus). In doing so, we can test the robustness of the escape velocity measurement for different definitions of the tail of the velocity distribution, and the consistency of the data with different underlying models. In this paper, we apply this method to the second data release of Gaia and find that a model with at least two components is preferred. Based on a fit with three bound components to account for the disk, relaxed halo, and the Gaia Sausage, we find the escape velocity of the Milky Way at the solar position to be $v_{rm{esc}}= 484.6^{+17.8}_{-7.4}$ km/s. Assuming a Navarro-Frenck-White dark matter profile, and taken in conjunction with a recent measurement of the circular velocity at the solar position of $v_c = 230 pm 10$ km/s, we find a Milky Way concentration of $c_{200} = 13.8^{+6.0}_{-4.3}$ and a mass of $M_{200} = 7.0^{+1.9}_{-1.2} times 10^{11} M_{odot}$, which is considerably lighter than previous measurements.
We have obtained low and medium resolution spectra of 9 brown dwarf candidate members of Coma Berenices and the Hyades using SpEX on the NASA InfaRed Telescope Facility and LIRIS on the William Herschel Telescope. We conclude that 7 of these objects are indeed late M or early L dwarfs, and that two are likely members of Coma Berenices, and four of the Hyades. Two objects, cbd40 and Hy3 are suggested to be a field L dwarfs, although there is also a possibility that Hy3 is an unresolved binary belonging to the cluster. These objects have masses between 71 and 53 M$_{rm Jup}$, close to the hydrogen burning boundary for these clusters, however only an optical detection of Lithium can confirm if they are truly substellar.
The velocity distribution of stars is a sensitive probe of the gravitational potential of the Galaxy, and hence of its dark matter distribution. In particular, the shape of the dark halo (e.g. spherical, oblate, or prolate) determines velocity correl ations, and different halo geometries are expected to result in measurable differences. Here we explore and interpret the correlations in the $(v_R, v_z)$-velocity distribution as a function of position in the Milky Way. We selected a high-quality sample of stars from the Gaia DR2 catalogue and characterised the orientation of the velocity distribution or tilt angle over a radial distance range of $[4-13]~$kpc and up to $3.5~$kpc away from the Galactic plane while taking into account the effects of the measurement errors. We find that the tilt angles change from spherical alignment in the inner Galaxy ($Rsim4~$kpc) towards more cylindrical alignments in the outer Galaxy ($Rsim11~$kpc) when using distances that take a global zero-point offset in the parallax of $-29~mu$as. However, if the amplitude of this offset is underestimated, then the inferred tilt angles in the outer Galaxy only appear shallower and are intrinsically more consistent with spherical alignment for an offset as large as $-54~mu$as. We further find that the tilt angles do not seem to strongly vary with Galactic azimuth and that different stellar populations depict similar tilt angles. Therefore we introduce a simple analytic function that describes the trends found over the full radial range. Since the systematic parallax errors in Gaia DR2 depend on celestial position, magnitude, and colour in complex ways, it is not possible to fully correct for them. Therefore it will be particularly important for dynamical modelling of the Milky Way to thoroughly characterise the systematics in astrometry in future Gaia data releases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا