ترغب بنشر مسار تعليمي؟ اضغط هنا

Existence and stability of circular orbits in general static and spherically symmetric spacetimes

71   0   0.0 ( 0 )
 نشر من قبل Junji Jia
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The existence and stability of circular orbits (CO) in static and spherically symmetric (SSS) spacetime are important because of their practical and potential usefulness. In this paper, using the fixed point method, we first prove a necessary and sufficient condition on the metric function for the existence of timelike COs in SSS spacetimes. After analyzing the asymptotic behavior of the metric, we then show that asymptotic flat SSS spacetime that corresponds to a negative Newtonian potential at large $r$ will always allow the existence of CO. The stability of the CO in a general SSS spacetime is then studied using the Lyapunov exponent method. Two sufficient conditions on the (in)stability of the COs are obtained. For null geodesics, a sufficient condition on the metric function for the (in)stability of null CO is also obtained. We then illustrate one powerful application of these results by showing that an SU(2) Yang-Mills-Einstein SSS spacetime whose metric function is not known, will allow the existence of timelike COs. We also used our results to assert the existence and (in)stabilities of a number of known SSS metrics.



قيم البحث

اقرأ أيضاً

In terms of Sturms theorem, we reexamine a marginal stable circular orbit (MSCO) such as the innermost stable circular orbit (ISCO) of a timelike geodesic in any spherically symmetric and static spacetime. MSCOs for some of exact solutions to the Ein steins equation are discussed. Strums theorem is explicitly applied to the Kottler (often called Schwarzschild-de Sitter) spacetime. Moreover, we analyze MSCOs for a spherically symmetric, static and vacuum solution in Weyl conformal gravity.
We study a marginally stable circular orbit (MSCO) such as the innermost stable circular orbit (ISCO) of a timelike geodesic in any spherically symmetric and static spacetime. It turns out that the metric components are separable from the constants o f motion along geodesics. We show also that a metric component $g_{rr}$ with a radial coordinate $r$ does not affect MSCOs. This suggests that, as a test of gravity, any ISCO measurement may be put into the same category as gravitational redshift experiments. MSCOs for exact solutions to the Einsteins equation are also mentioned.
We derive the equations of motion of a test particle in the equatorial plane around a static and spherically symmetric wormhole influenced by a radiation field including the general relativistic Poynting-Robertson effect. From the analysis of this dy namical system, we develop a diagnostic to distinguish a black hole from a wormhole, which can be timely supported by several and different observational data. This procedure is based on the possibility of having some wormhole metrics, which smoothly connect to the Schwarzschild metric in a small transition surface layer very close to the black hole event horizon. To detect such a metric-change, we analyse the emission proprieties from the critical hypersurface (stable region where radiation and gravitational fields balance) together with those from an accretion disk in the Schwarzschild spacetime toward a distant observer. Indeed, if the observational data are well fitted within such model, it immediately implies the existence of a black hole; while in case of strong departures from such description it means that a wormhole could be present. Finally, we discuss our results and draw the conclusions.
148 - Li-Ming Cao , Yong Song 2019
Based on the geometry of the codimension-2 surface in a general spherically symmetric spacetime, we give a quasi-local definition of a photon sphere as well as a photon surface. This new definition is the generalization of the one by Claudel, Virbhad ra, and Ellis but without reference to any umbilical hypersurface in the spacetime. The new definition effectively rules out the photon surface which has noting to do with gravity. The application of the definition to the Lemaitre-Tolman-Bondi (LTB) model of gravitational collapse reduces to a problem of a second order differential equation. We find that the energy balance on the boundary of the dust ball can provide one appropriate boundary condition to this equation. Based on this key investigation, we find an analytic photon surface solution in the Oppenheimer-Snyder (OS) model and reasonable numerical solutions for the marginally bounded collapse in the LTB model. Interestingly, in the OS model, we find that the time difference between the occurrence of the photon surface and the event horizon is mainly determined by the total mass of the system but not the size or the strength of gravitational field of the system.
We examine potential deformations of inner black hole and cosmological horizons in Reissner-Nordstrom de-Sitter spacetimes. While the rigidity of the outer black hole horizon is guaranteed by theorem, that theorem applies to neither the inner black h ole nor past cosmological horizon. Further for pure deSitter spacetime it is clear that the cosmological horizon can be deformed (by translation). For specific parameter choices, it is shown that both inner black hole and cosmological horizons can be infinitesimally deformed. However these do not extend to finite deformations. The corresponding results for general spherically symmetric spacetimes are considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا