ﻻ يوجد ملخص باللغة العربية
We derive the equations of motion of a test particle in the equatorial plane around a static and spherically symmetric wormhole influenced by a radiation field including the general relativistic Poynting-Robertson effect. From the analysis of this dynamical system, we develop a diagnostic to distinguish a black hole from a wormhole, which can be timely supported by several and different observational data. This procedure is based on the possibility of having some wormhole metrics, which smoothly connect to the Schwarzschild metric in a small transition surface layer very close to the black hole event horizon. To detect such a metric-change, we analyse the emission proprieties from the critical hypersurface (stable region where radiation and gravitational fields balance) together with those from an accretion disk in the Schwarzschild spacetime toward a distant observer. Indeed, if the observational data are well fitted within such model, it immediately implies the existence of a black hole; while in case of strong departures from such description it means that a wormhole could be present. Finally, we discuss our results and draw the conclusions.
Objectives: A systematic study on the general relativistic Poynting-Robertson effect has been developed so far by introducing different complementary approaches, which can be mainly divided in two kinds: (1) improving the theoretical assessments and
We investigate the three-dimensional motion of a test particle in the gravitational field generated by a non-spherical compact object endowed with a mass quadrupole moment, described by the Erez-Rosen metric, and a radiation field, including the gene
It has been proved that the general relativistic Poynting-Robertson effect in the equatorial plane of Kerr metric shows a chaotic behavior for a suitable range of parameters. As a further step, we calculate the timescale for the onset of chaos throug
We consider a further extension of our previous works in the treatment of the three-dimensional general relativistic Poynting-Robertson effect, which describes the motion of a test particle around a compact object as affected by the radiation field o
We determine for the first time in the literature the analytic form of the Rayleigh potential of the general relativistic Poynting-Robertson effect. The employed procedure is based on the use of an integrating factor and a new integration strategy wh