ﻻ يوجد ملخص باللغة العربية
In this paper, we study derived categories of certain toric varieties with Picard number three that are blowing-up another toric varieties along their torus invariant loci of codimension at most three. We construct strong full exceptional collections by using Orlovs blow-up formula and mutations.
We study instanton bundles $E$ on $mathbb{P}^1times mathbb{P}^1 times mathbb{P}^1$. We construct two different monads which are the analog of the monads for instanton bundles on $mathbb P^3$ and on the flag threefold $F(0,1,2)$. We characterize the G
We develop an analogue of Eisenbud-Floystad-Schreyers Tate resolutions for toric varieties. Our construction, which is given by a noncommutative analogue of a Fourier-Mukai transform, works quite generally and provides a new perspective on the relati
We call a sheaf on an algebraic variety immaculate if it lacks any cohomology including the zero-th one, that is, if the derived version of the global section functor vanishes. Such sheaves are the basic tools when building exceptional sequences, inv
We study the proalgebraic space which is the inverse limit of all finite branched covers over a normal toric variety $X$ with branching set the invariant divisor under the action of $(mathbb{C}^*)^n$. This is the proalgebraic toric-completion $X_{mat
We give a characterization of all complete smooth toric varieties whose rational homotopy is of elliptic type. All such toric varieties of complex dimension not more than three are explicitly described.