ﻻ يوجد ملخص باللغة العربية
Familiar factorized descriptions of classic QCD processes such as deeply-inelastic scattering (DIS) apply in the limit of very large hard scales, much larger than nonperturbative mass scales and other nonperturbative physical properties like intrinsic transverse momentum. Since many interesting DIS studies occur at kinematic regions where the hard scale, $Q sim$ 1-2 GeV, is not very much greater than the hadron masses involved, and the Bjorken scaling variable $x_{bj}$ is large, $x_{bj} gtrsim 0.5$, it is important to examine the boundaries of the most basic factorization assumptions and assess whether improved starting points are needed. Using an idealized field-theoretic model that contains most of the essential elements that a factorization derivation must confront, we retrace the steps of factorization approximations and compare with calculations that keep all kinematics exact. We examine the relative importance of such quantities as the target mass, light quark masses, and intrinsic parton transverse momentum, and argue that a careful accounting of parton virtuality is essential for treating power corrections to collinear factorization. We use our observations to motivate searches for new or enhanced factorization theorems specifically designed to deal with moderately low-$Q$ and large-$x_{bj}$ physics.
We calculate large mass diphoton exclusive photoproduction in the framework of collinear QCD factorization at next to leading order in {alpha}s and at leading twist. Collinear divergences of the coefficient function are absorbed by the evolution of t
We present the proton and neutron vector form factors in a convenient parametric form that is optimized for momentum transfers $lesssim$ few GeV$^2$. The form factors are determined from a global fit to electron scattering data and precise charge rad
We perform a Taylor series expansion of Tsallis distribution by assuming the Tsallis parameter $q$ close to 1. The $q$ value shows the deviation of a system from a thermalised Boltzmann distribution. By taking up to first order in $(q-1)$, we derive
We construct an improved implementation for combining transverse-momentum-dependent (TMD) factorization and collinear factorization. TMD factorization is suitable for low transverse momentum physics, while collinear factorization is suitable for high
It is unusual to find QCD factorization explained in the language of quantum information science. However, we will discuss how the issue of factorization and its breaking in high-energy QCD processes relates to phenomena like decoherence and entangle