ترغب بنشر مسار تعليمي؟ اضغط هنا

Parameterization and applications of the low-$Q^2$ nucleon vector form factors

58   0   0.0 ( 0 )
 نشر من قبل Gabriel Lee
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the proton and neutron vector form factors in a convenient parametric form that is optimized for momentum transfers $lesssim$ few GeV$^2$. The form factors are determined from a global fit to electron scattering data and precise charge radius measurements. A new treatment of radiative corrections is applied. This parametric representation of the form factors, uncertainties and correlations provides an efficient means to evaluate many derived observables. We consider two classes of illustrative examples: neutrino-nucleon scattering cross sections at GeV energies for neutrino oscillation experiments and nucleon structure corrections for atomic spectroscopy. The neutrino-nucleon charged current quasielastic (CCQE) cross section differs by 3-5% compared to commonly used form factor models when the vector form factors are constrained by recent high-statistics electron-proton scattering data from the A1 Collaboration. Nucleon structure parameter determinations include: the magnetic and Zemach radii of the proton and neutron, $[r_M^p, r_M^n] = [ 0.739(41)(23), 0.776(53)(28)]$ fm and $[r_Z^p, r_Z^n] = [ 1.0227(94)(51), -0.0445(14)(3)]$ fm; the Friar radius of nucleons, $[(r^p_F)^3, (r^n_F)^3] = [2.246(58)(2), 0.0093(6)(1)]$ fm$^3$; the electric curvatures, $[langle r^4 rangle^p_E, langle r^4 rangle^n_E ] = [1.08(28)(5), -0.33(24)(3)]$ fm$^4$; and bounds on the magnetic curvatures, $[ langle r^4 rangle^p_M, langle r^4 rangle^n_M ] = [ -2.0(1.7)(0.8), -2.3(2.1)(1.1)]$ fm$^4$. The first and dominant uncertainty is propagated from the experimental data and radiative corrections, and the second error is due to the fitting procedure.

قيم البحث

اقرأ أيضاً

We derive light-cone sum rules for the electromagnetic nucleon form factors including the next-to-leading-order corrections for the contribution of twist-three and twist-four operators and a consistent treatment of the nucleon mass corrections. The e ssence of this approach is that soft Feynman contributions are calculated in terms of small transverse distance quantities using dispersion relations and duality. The form factors are thus expressed in terms of nucleon wave functions at small transverse separations, called distribution amplitudes, without any additional parameters. The distribution amplitudes, therefore, can be extracted from the comparison with the experimental data on form factors and compared to the results of lattice QCD simulations. A selfconsistent picture emerges, with the three valence quarks carrying 40%:30%:30% of the proton momentum.
The spatial distribution of charge and magnetization within the proton is encoded in the elastic form factors. These have been precisely measured in elastic electron scattering, and the combination of proton and neutron form factors allows for the se paration of the up- and down-quark contributions. In this work, we extract the proton and neutron form factors from worlds data with an emphasis on precise new data covering the low-momentum region, which is sensitive to the large-scale structure of the nucleon. From these, we separate the up- and down-quark contributions to the proton form factors. We combine cross section and polarization measurements of elastic electron-proton scattering to separate the proton form factors and two-photon exchange (TPE) contributions. We combine the proton form factors with parameterization of the neutron form factor data and uncertainties to separate the up- and down-quark contributions to the protons charge and magnetic form factors. The extracted TPE corrections are compared to previous phenomenological extractions, TPE calculations, and direct measurements from the comparison of electron and positron scattering. The flavor-separated form factors are extracted and compared to models of the nucleon structure. With the inclusion of the precise new data, the extracted TPE contributions show a clear change ofsign at low $Q^2$, necessary to explain the high-$Q^2$ form factor discrepancy while being consistent with the known $Q^2 to 0$ limit. We find that the new Mainz data yield a significantly different result for the proton magnetic form factor and its flavor-separated contributions. We also observe that the RMS radius of both the up- and down-quark distributions are smaller than the RMS charge radius of the proton.
119 - I. A. Qattan , J. Arrington 2017
The spatial distribution of charge and magnetization within the nucleon (proton and neutron) is encoded in the elastic electromagnetic form factors $G_E^{(p,n)}$ and $G_M^{(p,n)}$. These form factors have been precisely measured utilizing elastic ele ctron scattering, and the combination of proton and neutron form factors allows for the separation of the up- and down-quark contributions to the nucleon form factors. We expand on our original analyses and extract the up- and down-quark contributions to the nucleon electromagnetic form factors from worldwide data with an emphasis on precise new data covering the low-momentum region, which is sensitive to the large-scale structure of the nucleon. From these, we construct the flavor-separated Dirac and Pauli form factors and their ratios, and compare the results to recent extractions and theoretical calculations and models.
The calculation of the nucleon strangeness form factors from N_f=2+1 clover fermion lattice QCD is presented. Disconnected insertions are evaluated using the Z(4) stochastic method, along with unbiased subtractions from the hopping parameter expansio n. We find that increasing the number of nucleon sources for each configuration improves the signal significantly. We obtain G_M^s(0) = -0.017(25)(07), which is consistent with experimental values, and has an order of magnitude smaller error. Preliminary results for the strangeness contribution to the second moment of the parton distribution function are also presented.
We report on a recent calculation of all Roper-related electromagnetic transtions form factors, covering the range of energies that next-to-come planned experiments are expected to map. Direct reliable calculations were performed, within a Poincare c ovariant approach of the three-body bound-state problem, up to $Q^2/m^2_N$=6; approximated then by applying the Schlessinger point method and the results eventually extended up to $Q^2/m^2_Nsimeq$12 via analytic continuation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا