ﻻ يوجد ملخص باللغة العربية
The Buchsbaum-Eisenbud-Horrocks Conjecture predicts that if M is a non-zero module of finite length and finite projective dimension over a local ring R of dimension d, then the i-th Betti number of M is at least d choose i. This conjecture implies that the sum of all the Betti numbers of such a module must be at least 2^d. We prove the latter holds in a large number of cases.
Let $R=Bbbk[x_1,...,x_m]$ be the polynomial ring over a field $Bbbk$ with the standard $mathbb Z^m$-grading (multigrading), let $L$ be a Noetherian multigraded $R$-module, let $beta_{i,alpha}(L)$ the $i$th (multigraded) Betti number of $L$ of multide
We introduce a new class of monomial ideals which we call symmetric shifted ideals. Symmetric shifted ideals are fixed by the natural action of the symmetric group and, within the class of monomial ideals fixed by this action, they can be considered
Let $(A, m, k)$ be a Gorenstein local ring of dimension $ dgeq 1.$ Let $I$ be an ideal of $A$ with $htt(I) geq d-1.$ We prove that the numerical function [ n mapsto ell(ext_A^i(k, A/I^{n+1}))] is given by a polynomial of degree $d-1 $ in the case w
In this paper, we define and study a notion of Ding projective dimension for complexes of left modules over associative rings. In particular, we consider the class of homologically bounded below complexes of left R-modules, and show that Ding projective dimension has a nice functorial description.
Let $K$ be a field and $S = K[x_1,dots,x_n]$ be a polynomial ring over $K$. We discuss the behaviour of the extremal Betti numbers of the class of squarefree strongly stable ideals. More precisely, we give a numerical characterization of the possible