ترغب بنشر مسار تعليمي؟ اضغط هنا

Bass and Betti Numbers of $A/I^n.$

121   0   0.0 ( 0 )
 نشر من قبل Ganesh Kadu
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $(A, m, k)$ be a Gorenstein local ring of dimension $ dgeq 1.$ Let $I$ be an ideal of $A$ with $htt(I) geq d-1.$ We prove that the numerical function [ n mapsto ell(ext_A^i(k, A/I^{n+1}))] is given by a polynomial of degree $d-1 $ in the case when $ i geq d+1 $ and $curv(I^n) > 1$ for all $n geq 1.$ We prove a similar result for the numerical function [ n mapsto ell(Tor_i^A(k, A/I^{n+1}))] under the assumption that $A$ is a CM ~ local ring. oindent We note that there are many examples of ideals satisfying the condition $curv(I^n) > 1,$ for all $ n geq 1.$ We also consider more general functions $n mapsto ell(Tor_i^A(M, A/I_n)$ for a filtration ${I_n }$ of ideals in $A.$ We prove similar results in the case when $M$ is a maximal CM ~ $A$-module and ${I_n=overline{I^n} }$ is the integral closure filtration, $I$ an $m$-primary ideal in $A.$



قيم البحث

اقرأ أيضاً

It is known that the numerical invariants Betti numbers and Bass numbers are worthwhile tools for decoding a large amount of information about modules over commutative rings. We highlight this fact, further, by establishing some criteria for certain semidualizing complexes via their Betti and Bass numbers. Two distinguished types of semidualizing complexes are the shifts of the underlying rings and dualizing complexes. Let $C$ be a semidualizing complex for an analytically irreducible local ring $R$ and set $n:=sup C$ and $d:=dim_RC$. We show that $C$ is quasi-isomorphic to a shift of $R$ if and only if the $n$th Betti number of $C$ is one. Also, we show that $C$ is a dualizing complex for $R$ if and only if the $d$th Bass number of $C$ is one.
We introduce a new class of monomial ideals which we call symmetric shifted ideals. Symmetric shifted ideals are fixed by the natural action of the symmetric group and, within the class of monomial ideals fixed by this action, they can be considered as an analogue of stable monomial ideals within the class of monomial ideals. We show that a symmetric shifted ideal has linear quotients and compute its (equivariant) graded Betti numbers. As an application of this result, we obtain several consequences for graded Betti numbers of symbolic powers of defining ideals of star configurations.
We study homological properties of random quadratic monomial ideals in a polynomial ring $R = {mathbb K}[x_1, dots x_n]$, utilizing methods from the Erd{o}s-R{e}nyi model of random graphs. Here for a graph $G sim G(n, p)$ we consider the `coedge idea l $I_G$ corresponding to the missing edges of $G$, and study Betti numbers of $R/I_G$ as $n$ tends to infinity. Our main results involve fixing the edge probability $p = p(n)$ so that asymptotically almost surely the Krull dimension of $R/I_G$ is fixed. Under these conditions we establish various properties regarding the Betti table of $R/I_G$, including sharp bounds on regularity and projective dimension, and distribution of nonzero normalized Betti numbers. These results extend work of Erman and Yang, who studied such ideals in the context of conjectured phenomena in the nonvanishing of asymptotic syzygies. Along the way we establish results regarding subcomplexes of random clique complexes as well as notions of higher-dimensional vertex $k$-connectivity that may be of independent interest.
Let $R=Bbbk[x_1,...,x_m]$ be the polynomial ring over a field $Bbbk$ with the standard $mathbb Z^m$-grading (multigrading), let $L$ be a Noetherian multigraded $R$-module, let $beta_{i,alpha}(L)$ the $i$th (multigraded) Betti number of $L$ of multide gree $a$. We introduce the notion of a generic (relative to $L$) multidegree, and the notion of multigraded module of generic type. When the multidegree $a$ is generic (relative to $L$) we provide a Hochster-type formula for $beta_{i,alpha}(L)$ as the dimension of the reduced homology of a certain simplicial complex associated with $L$. This allows us to show that there is precisely one homological degree $ige 1$ in which $beta_{i,alpha}(L)$ is non-zero and in this homological degree the Betti number is the $beta$-invariant of a certain minor of a matroid associated to $L$. In particular, this provides a precise combinatorial description of all multigraded Betti numbers of $L$ when it is a multigraded module of generic type.
Let $R = mathbb{K}[x_1, ldots, x_n]$ and $I subset R$ be a homogeneous ideal. In this article, we first obtain certain sufficient conditions for the subadditivity of $R/I$. As a consequence, we prove that if $I$ is generated by homogeneous complete i ntersection, then subadditivity holds for $R/I$. We then study a conjecture of Avramov, Conca and Iyengar on subadditivity, when $I$ is a monomial ideal with $R/I$ Koszul. We identify several classes of edge ideals of graphs $G$ such that the subadditivity holds for $R/I(G)$. We then study the strand connectivity of edge ideals and obtain several classes of graphs whose edge ideals are strand connected. Finally, we compute upper bounds for multigraded Betti numbers of several classes of edge ideals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا